Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cells ; 13(19)2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39404413

RESUMEN

Primary sclerosing cholangitis (PSC) is a rare, chronic liver disease with no approved therapies. The ursodeoxycholic acid (UDCA) has been widely used, although there is no evidence that the use of UDCA delays the time to liver transplant or increases survival. Several candidate drugs are currently being developed. The largest group of these new agents is represented by FXR agonists, including obeticholic acid, cilofexor, and tropifexor. Other agents that target bile acid metabolism are ASTB/IBAP inhibitors and fibroblasts growth factor (FGF)19 analogues. Cholangiocytes, the epithelial bile duct cells, play a role in PSC development. Recent studies have revealed that these cells undergo a downregulation of GPBAR1 (TGR5), a bile acid receptor involved in bicarbonate secretion and immune regulation. Additional agents under evaluation are PPARs (elafibranor and seladelpar), anti-itching agents such as MAS-related G-protein-coupled receptors antagonists, and anti-fibrotic and immunosuppressive agents. Drugs targeting gut bacteria and bile acid pathways are also under investigation, given the strong link between PSC and gut microbiota.


Asunto(s)
Ácidos y Sales Biliares , Colangitis Esclerosante , Humanos , Colangitis Esclerosante/tratamiento farmacológico , Colangitis Esclerosante/metabolismo , Ácidos y Sales Biliares/metabolismo , Animales
2.
Cells ; 13(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39329760

RESUMEN

Primary Biliary Cholangitis (PBC) is a chronic autoimmune liver disorder characterized by progressive cholestatic that, if untreated, can progress to liver fibrosis, cirrhosis and liver decompensation requiring liver transplant. Although the pathogenesis of the disease is multifactorial, there is a consensus that individuals with a genetic predisposition develop the disease in the presence of specific environmental triggers. A dysbiosis of intestinal microbiota is increasingly considered among the potential pathogenic factors. Cholangiocytes, the epithelial cells lining the bile ducts, are the main target of a dysregulated immune response, and cholangiocytes senescence has been recognized as a driving mechanism, leading to impaired bile duct function, in disease progression. Bile acids are also recognized as playing an important role, both in disease development and therapy. Thus, while bile acid-based therapies, specifically ursodeoxycholic acid and obeticholic acid, have been the cornerstone of therapy in PBC, novel therapeutic approaches have been developed in recent years. In this review, we will examine published and ongoing clinical trials in PBC, including the recently approved peroxisome-proliferator-activated receptor (PPAR) agonist, elafibranor and seladelpar. These novel second-line therapies are expected to improve therapy in PBC and the development of personalized approaches.


Asunto(s)
Cirrosis Hepática Biliar , Humanos , Cirrosis Hepática Biliar/terapia , Cirrosis Hepática Biliar/tratamiento farmacológico , Cirrosis Hepática Biliar/patología , Ácidos y Sales Biliares/metabolismo , Animales , Ácido Ursodesoxicólico/uso terapéutico , Ensayos Clínicos como Asunto , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/uso terapéutico
3.
Pharmacol Res ; 208: 107403, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39265668

RESUMEN

Inflammatory bowel diseases (IBD), including Crohn's disease and ulcerative colitis, are chronic disorders characterized by dysregulated immune response and persistent inflammation. Recent studies suggest that bile acid receptors, particularly GPBAR1, and the transcription factor RORγt play critical roles in modulating intestinal inflammation. This study evaluates the therapeutic potential of PBT002, a dual GPBAR1 agonist and RORγt inverse agonist, in IBD models. The effects of PBT002 were assessed through in vitro and in vivo experiments. Macrophages and T lymphocytes obtained from the buffy coat were exposed to PBT002 to evaluate its immunomodulatory activity. The beneficial effects in vivo were evaluated in mouse models of colitis induced by TNBS, DSS or DSS + IL-23 using also a Gpbar1 knock-out male mice. PBT002 exhibited an EC50 of 1.2 µM for GPBAR1 and an IC50 of 2.8 µM for RORγt. In in vitro, PBT002 modulated macrophage polarization towards an anti-inflammatory M2 phenotype and reduced Th17 cell markers while increasing Treg markers. In the TNBS-induced colitis model, PBT002 reduced weight loss, CDAI, and colon damage, while it modulated cytokine gene expression towards an anti-inflammatory profile. In GPBAR1-/-, the anti-inflammatory effects of PBT002 were attenuated, indicating partial GPBAR1 dependence. RNA sequencing revealed significant modulation of inflammatory pathways by PBT002. In DSS+IL-23 induced colitis, PBT002 mitigated disease exacerbation, reducing pro-inflammatory cytokine levels and immune cell infiltration. In conclusion, PBT002, a GPBAR1 agonist and RORγt inverse agonist, modulates both the innate and adaptive immune responses to reduce inflammation and disease severity in models of IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Receptores Acoplados a Proteínas G , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Masculino , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Agonismo Inverso de Drogas , Células Th17/efectos de los fármacos , Células Th17/inmunología , Sulfato de Dextran , Modelos Animales de Enfermedad
4.
Front Chem ; 12: 1425867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086986

RESUMEN

BAR502, a bile acid analogue, is active as dual FXR/GPBAR1 agonist and represents a promising lead for the treatment of cholestasis and NASH. In this paper we report the synthesis and the biological evaluation of a library of hybrid compounds prepared by combining, through high-yield condensation reaction, some fibrates with BAR502.The activity of the new conjugates was evaluated towards FXR, GPBAR1 and PPARα receptors, employing transactivation or cofactor recruitment assays. Compound 1 resulted as the most promising of the series and was subjected to further pharmacological investigation, together with stability evaluation and cell permeation assessment. We have proved by LCMS analysis that compound 1 is hydrolyzed in mice releasing clofibric acid and BAR505, the oxidized metabolite of BAR502, endowed with retained dual FXR/GPBAR1 activity.

5.
Prog Lipid Res ; 95: 101291, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39122016

RESUMEN

Bile acids are steroids formed at the interface of host metabolism and intestinal microbiota. While primary bile acids are generated in the liver from cholesterol metabolism, secondary bile acids represent the products of microbial enzymes. Close to 100 different enzymatic modifications of bile acids structures occur in the human intestine and clinically guided metagenomic and metabolomic analyses have led to the identification of an extraordinary number of novel metabolites. These chemical mediators make an essential contribution to the composition and function of the postbiota, participating to the bidirectional communications of the intestinal microbiota with the host and contributing to the architecture of intestinal-liver and -brain and -endocrine axes. Bile acids exert their function by binding to a group of cell membrane and nuclear receptors collectively known as bile acid-regulated receptors (BARRs), expressed in monocytes, tissue-resident macrophages, CD4+ T effector cells, including Th17, T regulatory cells, dendritic cells and type 3 of intestinal lymphoid cells and NKT cells, highlighting their role in immune regulation. In this review we report on how bile acids and their metabolitesmodulate the immune system in inflammations and cancers and could be exploiting for developing novel therapeutic approaches in these disorders.


Asunto(s)
Ácidos y Sales Biliares , Humanos , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/inmunología , Animales , Microbioma Gastrointestinal/inmunología
6.
Biochem Pharmacol ; 223: 116134, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38494064

RESUMEN

The leukemia inhibitory factor (LIF) is member of interleukin (IL)-6 family of cytokines involved immune regulation, morphogenesis and oncogenesis. In cancer tissues, LIF binds a heterodimeric receptor (LIFR), formed by a LIFRß subunit and glycoprotein(gp)130, promoting epithelial mesenchymal transition and cell growth. Bile acids are cholesterol metabolites generated at the interface of host metabolism and the intestinal microbiota. Here we demonstrated that bile acids serve as endogenous antagonist to LIFR in oncogenesis. The tissue characterization of bile acids content in non-cancer and cancer biopsy pairs from gastric adenocarcinomas (GC) demonstrated that bile acids accumulate within cancer tissues, with glyco-deoxycholic acid (GDCA) functioning as negative regulator of LIFR expression. In patient-derived organoids (hPDOs) from GC patients, GDCA reverses LIF-induced stemness and proliferation. In summary, we have identified the secondary bile acids as the first endogenous antagonist to LIFR supporting a development of bile acid-based therapies in LIF-mediated oncogenesis.


Asunto(s)
Interleucina-6 , Receptores de Citocinas , Humanos , Carcinogénesis , Factor Inhibidor de Leucemia/metabolismo , Receptores de Citocinas/metabolismo , Receptores OSM-LIF
8.
J Am Heart Assoc ; 12(23): e031241, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37996988

RESUMEN

BACKGROUND: Patients with nonalcoholic fatty liver disease are at increased risk to develop atherosclerotic cardiovascular diseases. FXR and GPBAR1 are 2 bile acid-activated receptors exploited in the treatment of nonalcoholic fatty liver disease: whether dual GPBAR1/FXR agonists synergize with statins in the treatment of the liver and cardiovascular components of nonalcoholic fatty liver disease is unknown. METHODS AND RESULTS: Investigations of human aortic samples obtained from patients who underwent surgery for aortic aneurysms and Gpbar1-/-, Fxr-/-, and dual Gpbar1-/-Fxr-/- mice demonstrated that GPBAR1 and FXR are expressed in the aortic wall and regulate endothelial cell/macrophage interactions. The expression of GPBAR1 in the human endothelium correlated with the expression of inflammatory biomarkers. Mice lacking Fxr and Gpbar1-/-/Fxr-/- display hypotension and aortic inflammation, along with altered intestinal permeability that deteriorates with age, and severe dysbiosis, along with dysregulated bile acid synthesis. Vasomotor activities of aortic rings were altered by Gpbar1 and Fxr gene ablation. In apolipoprotein E-/- and wild-type mice, BAR502, a dual GPBAR1/FXR agonist, alone or in combination with atorvastatin, reduced cholesterol and low-density lipoprotein plasma levels, mitigated the development of liver steatosis and aortic plaque formation, and shifted the polarization of circulating leukocytes toward an anti-inflammatory phenotype. BAR502/atorvastatin reversed intestinal dysbiosis and dysregulated bile acid synthesis, promoting a shift of bile acid pool composition toward FXR antagonists and GPBAR1 agonists. CONCLUSIONS: FXR and GPBAR1 maintain intestinal, liver, and cardiovascular homeostasis, and their therapeutic targeting with a dual GPBAR1/FXR ligand and atorvastatin holds potential in the treatment of liver and cardiovascular components of nonalcoholic fatty liver disease.


Asunto(s)
Ácidos y Sales Biliares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Disbiosis/complicaciones , Disbiosis/metabolismo , Proteínas de Unión al GTP/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Receptores Acoplados a Proteínas G/metabolismo
9.
Cell Oncol (Dordr) ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945798

RESUMEN

PURPOSE: The gastric adenocarcinoma (GC) represents the third cause of cancer-related mortality worldwide, and available therapeutic options remain sub-optimal. The Fibroblast growth factor receptors (FGFRs) are oncogenic transmembrane tyrosine kinase receptors. FGFR inhibitors have been approved for the treatment of various cancers and a STAT3-dependent regulation of FGFR4 has been documented in the H.pylori infected intestinal GC. Therefore, the modulation of FGFR4 might be useful for the treatment of GC. METHODS: To investigate wich factors could modulate FGFR4 signalling in GC, we employed RNA-seq analysis on GC patients biopsies, human patients derived organoids (PDOs) and cancer cell lines. RESULTS: We report that FGFR4 expression/function is regulated by the leukemia inhibitory factor (LIF) an IL-6 related oncogenic cytokine, in JAK1/STAT3 dependent manner. The transcriptomic analysis revealed a direct correlation between the expression of LIFR and FGFR4 in the tissue of an exploratory cohort of 31 GC and confirmed these findings by two external validation cohorts of GC. A LIFR inhibitor (LIR-201) abrogates STAT3 phosphorylation induced by LIF as well as recruitment of pSTAT3 to the promoter of FGFR4. Furthermore, inhibition of FGFR4 by roblitinib or siRNA abrogates STAT3 phosphorylation and oncogentic effects of LIF in GC cells, indicating that FGFR4 is a downstream target of LIF/LIFR complex. Treating cells with LIR-201 abrogates oncogenic potential of FGF19, the physiological ligand of FGFR4. CONCLUSIONS: Together these data unreveal a previously unregnized regulatory mechanism of FGFR4 by LIF/LIFR and demonstrate that LIF and FGF19 converge on the regulation of oncogenic STAT3 in GC cells.

10.
Biochem Pharmacol ; 218: 115900, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37926268

RESUMEN

While patients with nonalcoholic fatty liver disease (NAFLD) are at increased risk to develop clinically meaningful cardiovascular diseases (CVD), there are no approved drug designed to target the liver and CVD component of NAFLD. GPBAR1, also known as TGR5, is a G protein coupled receptor for secondary bile acids. In this study we have investigated the effect of GPBAR1 activation by BAR501, a selective GPBAR1 agonist, in Apolipoprotein E deficient (ApoE-/-) mice fed a high fat diet and fructose (Western diet), a validated model of NAFLD-associated atherosclerosis. Using aortic samples from patients who underwent surgery for abdominal aneurism, and ex vivo experiments with endothelial cells and human macrophages, we were able to co-localize the expression of GPBAR1 in CD14+ and PECAM1+ cells. Similar findings were observed in the aortic plaques from ApoE-/- mice. Treating ApoE-/- mice with BAR501, 30 mg/kg for 14 weeks, attenuated the body weight gain while ameliorated the insulin sensitivity by increasing the plasma concentrations of GLP-1 and FGF15. Activation of GPBAR1 reduced the aorta thickness and severity of atherosclerotic lesions and decreased the amount of plaques macrophages. Treating ApoE-/- mice reshaped the aortic transcriptome promoting the expression of anti-inflammatory genes, including IL-10, as also confirmed by tSNE analysis of spleen-derived macrophages. Feeding ApoE-/- mice with BAR501 redirected the bile acid synthesis and the composition of the intestinal microbiota. In conclusion, GPBAR1 agonism attenuates systemic inflammation and improve metabolic profile in a genetic/dietetic model of atherosclerosis. BAR501 might be of utility in the treatment for NAFLD-related CVD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Apolipoproteínas E , Aterosclerosis/tratamiento farmacológico , Enfermedades Cardiovasculares/complicaciones , Modelos Animales de Enfermedad , Células Endoteliales , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Receptores Acoplados a Proteínas G/genética
11.
Front Oncol ; 13: 1140730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998446

RESUMEN

Introduction: The leukemia inhibitory factor (LIF), is a cytokine belonging to IL-6 family, whose overexpression correlate with poor prognosis in cancer patients, including pancreatic ductal adenocarcinoma (PDAC). LIF signaling is mediate by its binding to the heterodimeric LIF receptor (LIFR) complex formed by the LIFR receptor and Gp130, leading to JAK1/STAT3 activation. Bile acids are steroid that modulates the expression/activity of membrane and nuclear receptors, including the Farnesoid-X-Receptor (FXR) and G Protein Bile Acid Activated Receptor (GPBAR1). Methods: Herein we have investigated whether ligands to FXR and GPBAR1 modulate LIF/LIFR pathway in PDAC cells and whether these receptors are expressed in human neoplastic tissues. Results: The transcriptome analysis of a cohort of PDCA patients revealed that expression of LIF and LIFR is increased in the neoplastic tissue in comparison to paired non-neoplastic tissues. By in vitro assay we found that both primary and secondary bile acids exert a weak antagonistic effect on LIF/LIFR signaling. In contrast, BAR502 a non-bile acid steroidal dual FXR and GPBAR1 ligand, potently inhibits binding of LIF to LIFR with an IC50 of 3.8 µM. Discussion: BAR502 reverses the pattern LIF-induced in a FXR and GPBAR1 independent manner, suggesting a potential role for BAR502 in the treatment of LIFR overexpressing-PDAC.

12.
ACS Omega ; 8(6): 5983-5994, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816679

RESUMEN

Retinoic acid receptor-related orphan receptor γ-t (RORγt) and GPBAR1, a transmembrane G-protein-coupled receptor for bile acids, are attractive drug targets to develop clinically relevant small modulators as potent therapeutics for autoimmune diseases. Herein, we designed, synthesized, and evaluated several new bile acid-derived ligands with potent dual activity. Furthermore, we performed molecular docking and MD calculations of the best dual modulators in the two targets to identify the binding modes as well as to better understand the molecular basis of the inverse agonism of RORγt by bile acid derivatives. Among these compounds, 7 was identified as a GPBAR1 agonist (EC50 5.9 µM) and RORγt inverse agonist (IC50 0.107 µM), with excellent pharmacokinetic properties. Finally, the most promising ligand displayed robust anti-inflammatory activity in vitro and in vivo in a mouse model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis.

13.
Sci Rep ; 13(1): 1602, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709356

RESUMEN

Non-alcoholic steatosis (NAFLD) and steatohepatitis (NASH) are two highly prevalent human disorders for which therapy remains suboptimal. Bile acids are signaling molecules acting on two main receptors the Farnesoid-x-receptor (FXR) and G protein coupled receptor GPB AR1. Clinical trials have shown that FXR agonism might result in side effects along with lack of efficacy in restoring liver histopathology. For these reasons a multi-targets therapy combined FXR agonists with agent targeting additional molecular mechanisms might have improved efficacy over selective FXR agonists. In the present study we have compared the effects of BAR502, a dual FXR/GPBAR1 ligand) alone or in combination with ursodeoxycholic acid (UDCA) in a model of NAFLD/NASH induced by feeding mice with a Western diet for 10 weeks. The results demonstrated that while BAR502 and UDCA partially protected against liver damage caused by Western diet, the combination of the two, reversed the pro-atherogenic lipid profile and completely reversed the histopathology damage, attenuating liver steatosis, ballooning, inflammation and fibrosis. Additionally, while both agents increased insulin sensitivity and bile acid signaling, the combination of the two, modulated up top 85 genes in comparison of mice feed a Western diet, strongly reducing expression of inflammatory markers such as chemokines and cytokines. Additionally, the combination of the two agents redirected the bile acid metabolism toward bile acid species that are GPBAR1 agonist while reduced liver bile acid content and increased fecal excretion. Together, these data, highlight the potential role for a combinatorial therapy based on BAR502 and UDCA in treating of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ácido Ursodesoxicólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ácido Ursodesoxicólico/farmacología
14.
Artículo en Inglés | MEDLINE | ID: mdl-36411558

RESUMEN

Inflammatory bowel disease (IBD) is a chronic and relapsing disease caused by a dysregulated immune response to host intestinal microbiota that occurs in genetically predisposed individuals. IBD encompasses two major clinical entities: ulcerative colitis (UC), limited to the colonic mucosa, and Crohn's disease (CD), which might affect any segment of the gastrointestinal tract. Despite the prevalence of IBD increasing worldwide, therapy remains suboptimal, largely because of the variability of causative mechanisms, raising the need to develop individualized therapeutic approaches targeted to each individual patient. In this context, patients-derived intestinal organoids represent an effective tool for advancing our understanding of IBD's pathogenesis. Organoid 3D culture systems offer a unique model for dissecting epithelial mechanisms involved IBDs and testing individualized therapy, although the lack of a functional immune system and a microbiota, two driving components of the IBD pathogenesis, represent a major barrier to their exploitation in clinical medicine. In this review, we have examined how to improve the translational utility of intestinal organoids in IBD and how co-cultures of 3D or 2D organoids and immune cells and/or intestinal microbiota might help to overcome these limitations.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Intestinos/patología , Organoides/patología
15.
Hepatology ; 78(1): 26-44, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107019

RESUMEN

BACKGROUND AND AIM: Drug-induced liver injury (DILI) is a common disorder that involves both direct liver cell toxicity and immune activation. The bile acid receptor, G-protein-coupled bile acid receptor 1 (GPBAR1; Takeda G-protein-coupled receptor 5 [TGR5]), and cysteinyl leukotriene receptor (CYSLTR) 1 are G-protein-coupled receptors activated by bile acids and leukotrienes, exerting opposite effects on cell-to-cell adhesion, inflammation, and immune cell activation. To investigate whether GPBAR1 and CYSLTR1 mutually interact in the development of DILI, we developed an orally active small molecule, CHIN117, that functions as a GPBAR1 agonist and CYSLTR1 antagonist. APPROACH AND RESULTS: RNA-sequencing analysis of liver explants showed that acetaminophen (APAP) intoxication positively modulates the leukotriene pathway, CYSLTR1, 5-lipoxygenase, and 5-lipoxygenase activating protein, whereas GPBAR1 gene expression was unchanged. In mice, acute liver injury induced by orally dosing APAP (500 mg/kg) was severely exacerbated by Gpbar1 gene ablation and attenuated by anti-Cysltr1 small interfering RNA pretreatment. Therapeutic dosing of wild-type mice with CHIN117 reversed the liver damage caused by APAP and modulated up to 1300 genes, including 38 chemokines and receptors, that were not shared by dosing mice with a selective GPBAR1 agonist or CYSLTR1 antagonist. Coexpression of the two receptors was detected in liver sinusoidal endothelial cells (LSECs), monocytes, and Kupffer cells, whereas combinatorial modulation of CYSLTR1 and GPBAR1 potently reversed LSEC/monocyte interactions. CHIN117 reversed liver damage and liver fibrosis in mice administered CCl 4 . CONCLUSIONS: By genetic and pharmacological approaches, we demonstrated that GPBAR1 and CYSLTR1 mutually interact in the development of DILI. A combinatorial approach designed to activate GPBAR1 while inhibiting CYSLTR1 reverses liver injury in models of DILI.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hepatopatías , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Araquidonato 5-Lipooxigenasa/metabolismo , Células Endoteliales/metabolismo , Acetaminofén/toxicidad , Receptores Acoplados a Proteínas G/metabolismo , Hepatopatías/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Leucotrienos/metabolismo , Proteínas de Unión al GTP/metabolismo
16.
Cells ; 11(21)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36359879

RESUMEN

Pancreatic cancer is a leading cause of cancer mortality and is projected to become the second-most common cause of cancer mortality in the next decade. While gene-wide association studies and next generation sequencing analyses have identified molecular patterns and transcriptome profiles with prognostic relevance, therapeutic opportunities remain limited. Among the genes that are upregulated in pancreatic ductal adenocarcinomas (PDAC), the leukaemia inhibitory factor (LIF), a cytokine belonging to IL-6 family, has emerged as potential therapeutic candidate. LIF is aberrantly secreted by tumour cells and promotes tumour progression in pancreatic and other solid tumours through aberrant activation of the LIF receptor (LIFR) and downstream signalling that involves the JAK1/STAT3 pathway. Since there are no LIFR antagonists available for clinical use, we developed an in silico strategy to identify potential LIFR antagonists and drug repositioning with regard to LIFR antagonists. The results of these studies allowed the identification of mifepristone, a progesterone/glucocorticoid antagonist, clinically used in medical abortion, as a potent LIFR antagonist. Computational studies revealed that mifepristone binding partially overlapped the LIFR binding site. LIF and LIFR are expressed by human PDAC tissues and PDAC cell lines, including MIA-PaCa-2 and PANC-1 cells. Exposure of these cell lines to mifepristone reverses cell proliferation, migration and epithelial mesenchymal transition induced by LIF in a concentration-dependent manner. Mifepristone inhibits LIFR signalling and reverses STAT3 phosphorylation induced by LIF. Together, these data support the repositioning of mifepristone as a potential therapeutic agent in the treatment of PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Embarazo , Femenino , Humanos , Receptores OSM-LIF/genética , Mifepristona/farmacología , Mifepristona/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Reposicionamiento de Medicamentos , Carcinoma Ductal Pancreático/patología , Antagonistas de Hormonas/farmacología , Neoplasias Pancreáticas
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(11): 159218, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35985473

RESUMEN

Non-alcoholic steatosis (NAFLD) and steatohepatitis (NASH) are two highly prevalent human disorders for which therapy remains suboptimal. Bile acids play an essential role in regulating liver metabolism, and several bile acids-based therapy are currently investigated for their potential therapeutic efficacy in NAFLD/NASH. Bile acids exert their functions, at least in part, by modulating two main receptors the Farnesoid-x-receptor (FXR) and the G protein-coupled receptor, GPBAR1. In the present study we have compared the pharmacological effects of two bile acids, the ursodeoxycholic acid (UDCA) and its derivative norUDCA, in a model of NAFLD/NASH induced by feeding mice with a Western diet for 12 weeks. The results of these studies demonstrated that both UDCA and norUDCA protected against development of steatosis and fibrosis, but did not reduce the hepatocytes ballooning nor the development of a pro-atherogenic lipid profile. Both agents reduced liver lipogenesis and ameliorated insulin sensitivity and adipocytes signaling as shown by increased expression of adiponectin. Mechanistically, UDCA acts as weak GPBAR1 agonist, while norUDCA exerted no effect on both GPBAR1 and FXR. In vivo administration of UDCA resets bile acid synthesis and promotes a shift toward bile acids species that are GPBAR1 agonists, UDCA, TUDCA and hyodeoxycholic acid, and increases GLP1 expression in the ileum. In contrast norUDCA is poorly metabolized exerting a minimal impact on GPBAR1 signaling. Together, these data, highlight the potential role of UDCA and norUDCA in treating of NAFLD, though these beneficial effects are supported by different mechanisms.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ácido Ursodesoxicólico , Animales , Ácidos y Sales Biliares , Humanos , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptores Acoplados a Proteínas G , Roedores , Ácido Ursodesoxicólico/farmacología , Ácido Ursodesoxicólico/uso terapéutico
18.
Front Oncol ; 12: 939969, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847866

RESUMEN

Gastric cancer (GC) is the third cause of cancer-related mortality worldwide. Nevertheless, because GC screening programs are not cost-effective, most patients receive diagnosis in the advanced stages, when surgical options are limited. Peritoneal dissemination occurs in approximately one-third of patients with GC at the diagnosis and is a strong predictor of poor outcome. Despite the clinical relevance, biological and molecular mechanisms underlying the development of peritoneal metastasis in GC remain poorly defined. Here, we report results of a high-throughput sequencing of transcriptome expression in paired samples of non-neoplastic and neoplastic gastric samples from 31 patients with GC with or without peritoneal carcinomatosis. The RNA-seq analysis led to the discovery of a group of highly upregulated or downregulated genes, including the leukemia inhibitory factor receptor (LIFR) and one cut domain family member 2 (ONECUT2) that were differentially modulated in patients with peritoneal disease in comparison with patients without peritoneal involvement. Both LIFR and ONECUT2 predicted survival at univariate statistical analysis. LIFR and its major ligand LIF belong to the interleukin-6 (IL-6) cytokine family and have a central role in immune system regulation, carcinogenesis, and dissemination in several human cancers. To confirm the mechanistic role of the LIF/LIFR pathway in promoting GC progression, GC cell lines were challenged in vitro with LIF and a LIFR inhibitor. Among several GC cell lines, MKN45 cells displayed the higher expression of the receptor, and their exposure to LIF promotes a concentration-dependent proliferation and epithelial-mesenchymal transition (EMT), as shown by modulation of relative expression of E-cadherin/vimentin along with JAK and STAT3 phosphorylation and acquisition of a migratory phenotype. Furthermore, exposure to LIF promoted the adhesion of MKN45 cells to the peritoneum in an ex vivo assay. These effects were reversed by the pharmacological blockade of LIFR signaling. Together, these data suggest that LIFR might have a major role in promoting disease progression and peritoneal dissemination in patients with GC and that development of LIF/LIFR inhibitors might have a role in the treatment of GC.

19.
Front Pharmacol ; 13: 858137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35559268

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development.

20.
Cells ; 11(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35406751

RESUMEN

BACKGROUND & AIMS: ACE2, a carboxypeptidase that generates Ang-(1-7) from Ang II, is highly expressed in the lung, small intestine and colon. GPBAR1, is a G protein bile acid receptor that promotes the release of the insulinotropic factor glucagon-like peptide (GLP)-1 and attenuates intestinal inflammation. METHODS: We investigated the expression of ACE2, GLP-1 and GPBAR1 in two cohorts of Crohn's disease (CD) patients and three mouse models of colitis and Gpbar1-/- mice. Activation of GPBAR1 in these models and in vitro was achieved by BAR501, a selective GPBAR1 agonist. RESULTS: In IBD patients, ACE2 mRNA expression was regulated in a site-specific manner in response to inflammation. While expression of ileal ACE2 mRNA was reduced, the colon expression was induced. Colon expression of ACE2 mRNA in IBD correlated with expression of TNF-α and GPBAR1. A positive correlation occurred between GCG and GPBAR1 in human samples and animal models of colitis. In these models, ACE2 mRNA expression was further upregulated by GPABR1 agonism and reversed by exendin-3, a GLP-1 receptor antagonist. In in vitro studies, liraglutide, a GLP-1 analogue, increased the expression of ACE2 in colon epithelial cells/macrophages co-cultures. CONCLUSIONS: ACE2 mRNA expression in the colon of IBD patients and rodent models of colitis is regulated in a TNF-α- and GLP-1-dependent manner. We have identified a GPBAR1/GLP-1 mechanism as a positive modulator of ACE2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Colitis , Enfermedad de Crohn , Péptido 1 Similar al Glucagón , Receptores Acoplados a Proteínas G , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Ácidos y Sales Biliares , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Inflamación , Ratones , ARN Mensajero/genética , Receptores Acoplados a Proteínas G/metabolismo , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA