Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38844736

RESUMEN

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Asunto(s)
Líquido Amniótico , Células Dendríticas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Esclerosis Múltiple , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Líquido Amniótico/citología , Líquido Amniótico/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/terapia , Encefalomielitis Autoinmune Experimental/metabolismo , Humanos , Esclerosis Múltiple/terapia , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Femenino , Células Madre/metabolismo , Células Madre/citología , Ratones Endogámicos C57BL
2.
Curr Res Food Sci ; 8: 100769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800638

RESUMEN

This study explores the effect of spray-drying (SD) inlet temperatures (Tinlet 120 and 150 °C) and wall material on the chemical and physico-chemical properties of microencapsulated hop extracts (MHE). Hop extract was formulated with maltodextrin (MD) and gum Arabic (GA) used in single or in combination with ß-cyclodextrin (ßCD). MHE were evaluated for physical properties, bitter acids (BA), total polyphenol content (TPC) and encapsulation efficiency (TPC EE), and antioxidant capacity (AOC). Powders produced at Tinlet 150 °C exhibited the highest flowability and generally higher TPC yield. Besides Tinlet, MD enabled the obtaining of MHE with the highest encapsulation efficiency. Other physico-chemical and antioxidant properties differently varied depending on the Tinlet. Overall, the ßCD addition positively affected α-acids, and ß-acids of MHE obtained at Tinlet 120 °C. ATR-FTIR analysis showed hydrogen bond formation between hop compounds and ßCD. Multifactorial ANOVA highlighted that Tinlet, W, and their interaction influenced almost all the chemical and physico-chemical properties of MHE.

3.
Int J Biol Macromol ; 270(Pt 2): 132541, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777012

RESUMEN

Bio-based polymers are materials of high interest given the harmful environmental impact that involves the use of non-biodegradable fossil products for industrial applications. These materials are also particularly interesting as bio-based ligands for the preparation of metal nanoparticles (MNPs), employed as catalysts for the synthesis of high value chemicals. In the present study, Ru (0) and Rh(0) Metal Nanoparticles supported on Sodium Carboxymethyl cellulose (MNP(0)s-CMCNa) were prepared by simply mixing RhCl3x3H2O or RuCl3 with an aqueous solution of CMCNa, followed by NaBH4 reduction. The formation of MNP(0)s-CMCNa was confirmed by FT-IR and XRD, and their size estimated to be around 1.5 and 2.2 nm by TEM analysis. MNP(0)s-CMCNa were employed for the hydrogenation of (E)-cinnamic aldehyde, furfural and levulinic acid. Hydrogenation experiments revealed that CMCNa is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles allowing to obtain high conversions (>90 %) and selectivities (>98 %) with all substrates tested. Easy recovery by liquid/liquid extraction allowed to separate the catalyst from the reaction products, and recycling experiments demonstrated that MNPs-CS were highly efficiency up to three times in best hydrogenation conditions.


Asunto(s)
Carboximetilcelulosa de Sodio , Nanopartículas del Metal , Solubilidad , Agua , Carboximetilcelulosa de Sodio/química , Catálisis , Agua/química , Nanopartículas del Metal/química , Hidrogenación , Rutenio/química , Rodio/química
4.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731574

RESUMEN

Bio-based polymers are attracting increasing interest as alternatives to harmful and environmentally concerning non-biodegradable fossil-based products. In particular, bio-based polymers may be employed as ligands for the preparation of metal nanoparticles (M(0)NPs). In this study, chitosan (CS) was used for the stabilization of Ru(0) and Rh(0) metal nanoparticles (MNPs), prepared by simply mixing RhCl3 × 3H2O or RuCl3 with an aqueous solution of CS, followed by NaBH4 reduction. The formation of M(0)NPs-CS was confirmed by Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Thermal Gravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Analysis (EDX), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). Their size was estimated to be below 40 nm for Rh(0)-CS and 10nm for Ru(0)-CS by SEM analysis. M(0)NPs-CS were employed for the hydrogenation of (E)-cinnamic aldehyde and levulinic acid. Easy recovery by liquid-liquid extraction made it possible to separate the catalyst from the reaction products. Recycling experiments demonstrated that M(0)NPs-CS were highly efficient up to four times in the best hydrogenation conditions. The data found in this study show that CS is an excellent ligand for the stabilization of Rh(0) and Ru(0) nanoparticles, allowing the production of some of the most efficient, selective and recyclable hydrogenation catalysts known in the literature.

5.
Food Chem Toxicol ; 185: 114513, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342230

RESUMEN

Cannabidiol is gaining increasing interest for its potential anti-inflammatory, immunomodulatory, and antineoplastic effects. The purpose of this study is to investigate the biological effects of acute and chronic CBD administration on gingival fibroblasts and oral keratinocytes. Viability, morphology, migration, apoptosis and cell cycle, and expression of related genes (p53, BCL2, p21, and BAX) and of endocannabinoid system receptors (CB1, CB2 and GPR55) with real-time PCR and DNA damage with phospho-γ-H2AX immunofluorescence detection were analyzed. Concentrations between 100 µM and 0.001 µM were used: 50 µM (toxic dose), 25 µM (viability promoter), and 1 µM (nontoxic), were selected for subsequent chronic analysis. Acute treatment reveals significant effects than chronic, in particular in fibroblasts: concentrations ≥50 µM are highly cytotoxic, with increased apoptosis and reduced migration. Cell death correlates with increased p53 and BAX, followed by arrest in G0/G1 phase, with elevated p21 levels, suggesting a time- and dose-dependent damage. An increase in H2AX phosphorylation was observed with 25 µM and 50 µM, while 1 µM was biocompatible. Keratinocytes showed less cytotoxic effect than fibroblasts. Induced cell damage was dose- and time-related, with less damage after chronic treatment. Further investigations are needed with longer time frames to evaluate CBD dose- and time-dependent effects to identify an effective therapeutic dose.


Asunto(s)
Cannabidiol , Humanos , Cannabidiol/toxicidad , Cannabidiol/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ciclo Celular
7.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37707657

RESUMEN

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Asunto(s)
Dipeptidil Peptidasa 4 , Semen , Perros , Masculino , Animales , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometría de Flujo/veterinaria
8.
Nanomaterials (Basel) ; 13(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999307

RESUMEN

Poly(lactic) acid (PLA) is a bio-compatible polymer widely used in additive manufacturing, and in the form of cellular foam it shows excellent mechanical and piezoelectric properties. This type of structure can be easily 3D-printed by Fusion Deposition Modelling (FDM) with commercially available composite filaments. In this work, we present mechanical and electrical investigations on 3D-printed low-cost and eco-friendly foamed PLA. The cellular microstructure and the foaming degree were tuned by varying extrusion temperature and flowrate. The maximum surface potential and charge stability of disk samples were found in correspondence of extrusion temperature between 230 and 240 °C with a flowrate of 53-44% when charging on a heated bed at 85 °C. The cells' morphology and correlated mechanical properties were analyzed and the measured piezoelectric d33 coefficient was found to be 212 pC/N. These findings show the importance of printing parameters and thermal treatment during the charging process in order to obtain the highest charge storage, stability and material flexibility. These results suggest that 3D-printed cellular PLA is a promising sustainable material for sensing and energy-harvesting applications.

9.
Polymers (Basel) ; 15(18)2023 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-37765648

RESUMEN

The aim of this work was to develop sustainable patches for wound application, using the biopolymer starch, created using a low-cost 3D printing PAM device. The composition of a starch gel was optimized for PAM extrusion: corn starch 10% w/w, ß-glucan water suspension (filler, 1% w/w), glycerol (plasticizer, 29% w/w), and water 60% w/w. The most suitable 3D printing parameters were optimized as well (nozzle size 0.8 mm, layer height 0.2 mm, infill 100%, volumetric flow rate 3.02 mm3/s, and print speed 15 mm/s). The suitable conditions for post-printing drying were set at 37 °C for 24 h. The obtained patch was homogenous but with low mechanical resistance. To solve this problem, the starch gel was extruded over an alginate support, which, after drying, becomes an integral part of the product, constituting the backing layer of the final formulation. This approach significantly improved the physicochemical and post-printing properties of the final bilayer patch, showing suitable mechanical properties such as elastic modulus (3.80 ± 0.82 MPa), strength (0.92 ± 0.08 MPa), and deformation at break (50 ± 1%). The obtained results suggest the possibility of low-cost production of patches for wound treatment by additive manufacturing technology.

10.
Pharmaceutics ; 15(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37631271

RESUMEN

Hazelnut shells, the main waste deriving from hazelnut processing, represent an interesting source of active molecules useful in pharmaceutics, although they have not yet been examined in depth. A hydrosoluble extract (hazelnut shell extract, HSE) was prepared by the maceration method using a hydroalcoholic solution and used as the active ingredient of patches (prepared by casting method) consisting of composites of highly deacetylated chitosan and green clay. In vitro studies showed that the formulation containing HSE is able to stimulate keratinocyte growth, which is useful for healing purposes, and to inhibit the growth of S. aureus (Log CFU/mL 0.95 vs. 8.85 of the control after 48 h); this bacterium is often responsible for wound infections and is difficult to treat by conventional antibiotics due to its antibiotic resistance. The produced patches showed suitable tensile properties that are necessary to withstand mechanical stress during both the removal from the packaging and application. The obtained results suggest that the developed patch could be a suitable product to treat wounds.

11.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119554, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37524263

RESUMEN

Hydroquinone, a potent toxic agent of cigarette smoke, damages retinal pigmented epithelial cells by triggering oxidative stress and mitochondrial dysfunction, two events causally related to the development and progression of retinal diseases. The inner mitochondrial membrane is enriched in cardiolipin, a phospholipid susceptible of oxidative modifications which determine cell-fate decision. Using ARPE-19 cell line as a model of retinal pigmented epithelium, we analyzed the potential involvement of cardiolipin in hydroquinone toxicity. Hydroquinone exposure caused an early concentration-dependent increase in mitochondrial reactive oxygen species, decrease in mitochondrial membrane potential, and rise in the rate of oxygen consumption not accompanied by changes in ATP levels. Despite mitochondrial impairment, cell viability was preserved. Hydroquinone induced cardiolipin translocation to the outer mitochondrial membrane, and an increase in the colocalization of the autophagosome adapter protein LC3 with mitochondria, indicating the induction of protective mitophagy. A prolonged hydroquinone treatment induced pyroptotic cell death by cardiolipin-mediated caspase-1 and gasdermin-D activation. Cardiolipin-specific antioxidants counteracted hydroquinone effects pointing out that cardiolipin can act as a mitochondrial "eat-me signal" or as a pyroptotic cell death trigger. Our results indicate that cardiolipin may act as a timer for the mitophagy to pyroptosis switch and propose cardiolipin-targeting compounds as promising approaches for the treatment of oxidative stress-related retinal diseases.


Asunto(s)
Cardiolipinas , Enfermedades de la Retina , Humanos , Cardiolipinas/metabolismo , Hidroquinonas/toxicidad , Hidroquinonas/metabolismo , Células Epiteliales/metabolismo , Enfermedades de la Retina/metabolismo
12.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375353

RESUMEN

Zinc oxide (ZnO) is an attractive semiconductor material for photocatalytic applications, owing to its opto-electronic properties. Its performances are, however, strongly affected by the surface and opto-electronic properties (i.e., surface composition, facets and defects), in turn related to the synthesis conditions. The knowledge on how these properties can be tuned and how they are reflected on the photocatalytic performances (activity and stability) is thus essential to achieve an active and stable material. In this work, we studied how the annealing temperature (400 °C vs. 600 °C) and the addition of a promoter (titanium dioxide, TiO2) can affect the physico-chemical properties of ZnO materials, in particular surface and opto-electronic ones, prepared through a wet-chemistry method. Then, we explored the application of ZnO as a photocatalyst in CO2 photoreduction, an appealing light-to-fuel conversion process, with the aim to understand how the above-mentioned properties can affect the photocatalytic activity and selectivity. We eventually assessed the capability of ZnO to act as both photocatalyst and CO2 adsorber, thus allowing the exploitation of diluted CO2 sources as a carbon source.

13.
Front Endocrinol (Lausanne) ; 14: 1063916, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065743

RESUMEN

Lately, nickel oxide nanoparticles (NiO NPs) have been employed in different industrial and biomedical fields. Several studies have reported that NiO NPs may affect the development of reproductive organs inducing oxidative stress and, resulting in male infertility. We investigated the in vitro effects of NiO NPs on porcine pre-pubertal Sertoli cells (SCs) which undergone acute (24 h) and chronic (from 1 up to 3 weeks) exposure at two subtoxic doses of NiO NPs of 1 µg/ml and 5 µg/ml. After NiO NPs exposure we performed the following analysis: (a) SCs morphological analysis (Light Microscopy); (b) ROS production and oxidative DNA damage, gene expression of antioxidant enzymes (c) SCs functionality (AMH, inhibin B Real-time PCR analysis and ELISA test); (d) apoptosis (WB analysis); (e) pro-inflammatory cytokines (Real-time PCR analysis), and (f) MAPK kinase signaling pathway (WB analysis). We found that the SCs exposed to both subtoxic doses of NiO NPs didn't sustain substantial morphological changes. NiO NPs exposure, at each concentration, reported a marked increase of intracellular ROS at the third week of treatment and DNA damage at all exposure times. We demonstrated, un up-regulation of SOD and HO-1 gene expression, at both concentrations tested. The both subtoxic doses of NiO NPs detected a down-regulation of AMH and inhibin B gene expression and secreted proteins. Only the 5 µg/ml dose induced the activation of caspase-3 at the third week. At the two subtoxic doses of NiO NPs a clear pro-inflammatory response was resulted in an up-regulation of TNF-α and IL-6 in terms of mRNA. Finally, an increased phosphorylation ratio of p-ERK1/2, p-38 and p-AKT was observed up to the third week, at both concentrations. Our results show the negative impact of subtoxic doses NiO NPs chronic exposure on porcine SCs functionality and viability.


Asunto(s)
Infertilidad Masculina , Nanopartículas , Masculino , Animales , Porcinos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Células de Sertoli/metabolismo , Factores de Riesgo
14.
Curr Res Food Sci ; 6: 100499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081859

RESUMEN

Pea proteins are being increasingly used for the formulation of plant-based products, but their globular structure and the presence of aggregates can affect their technological properties. In this study, the effect of high pressure homogenization (HPH) at different intensities (60 and 100 MPa) was investigated as a pre-treatment to modulate the techno-functional properties of a pea protein isolate (IP) extracted through an alkaline extraction/isoelectric precipitation process. SDS-PAGE, circular dichroism, thermal properties, total free sulfhydryl groups, antioxidant capacity and reducing properties were evaluated along with technological indices as solubility, WHC and OHC, interfacial tension and emulsifying capacity. HPH treatments were able to unfold and modify proteins structure, leading also to a change of the relative abundance of pea protein globulins (SDS-PAGE) and of the vicilin to legumin ratio. Solubility, WHC and OHC were improved, while interfacial tension and emulsifying capacity were weakly affected. However, an enhanced physical stability over time of the emulsions prepared with the 60 MPa-treated protein was found, likely as an effect of the decreased ratio between vicilin and legumin after treatment. Results of this study will contribute to deepen the effect of the HPH technology used as pre-treatment, adding useful results and expanding knowledge about the structure and techno-functional properties of native and modified pea proteins.

15.
Int J Pharm ; 638: 122925, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37028573

RESUMEN

ß-glucan is a well-known functional and bioactive food ingredient. Recently, some studies highlighted several interesting pharmacological activities, such as hypocholesterolemic, hypoglycemic, immunomodulatory, antitumor, antioxidant and anti-inflammatory. The aim of this study is to evaluate a novel application of ß-glucan, obtained from barley, for the development of formulations for skin use. Several water suspensions were obtained from barley flour of different particle sizes treated by high power ultrasonic (HPU) technique. Barley flour fraction in the range of 400-500 µm allowed to obtain a stable suspension, represented both by a water soluble and water insoluble fraction of ß-glucans, that showed excellent film forming ability. The plasticizer sorbitol as well as the bioadhesive biopolymer acacia gum were added to this suspension in order to obtain a gel suitable to prepare films by casting. The obtained films demonstrated suitable mechanical properties and ability to stimulate in vitro keratinocytes growth suggesting its possible application in dermatological field as for wound treatment. This study demonstrated the dual use of barley suspension: as excipient and as active ingredient.


Asunto(s)
Hordeum , beta-Glucanos , Ultrasonido , Harina , Agua , Extractos Vegetales
16.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830001

RESUMEN

In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.

17.
Cells ; 12(4)2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831194

RESUMEN

Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.


Asunto(s)
Senescencia Celular , Vesículas Extracelulares , Senescencia Celular/genética , Vesículas Extracelulares/metabolismo , Fenotipo , Transporte Biológico
18.
Materials (Basel) ; 16(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36836970

RESUMEN

Silver nanoparticles are usually prepared by the reduction of silver cations through chemical and non-sustainable procedures that involve the use of reducing chemical agents. Therefore, many efforts have been made in the search for sustainable alternative methods. Among them, an ultrasound-assisted procedure could be a suitable and sustainable method to afford well-dispersed and nanometric silver particles. This paper describes a sustainable, ultrasound-assisted method using citrate as a reducing agent to prepare silver@hydroxyapatite functionalized calcium carbonate composites. For comparison, an ultrasound-assisted reduction was performed in the presence of NaBH4. The composites obtained in the presence of these two different reducing agents were compared in terms of nanoparticle nature, antimicrobial activity, and cytotoxic activity. The nanoparticle nature was investigated by several techniques, including X-ray powder diffraction, field-emission scanning electron microscopy, transmission electron microscopy, UV-Vis spectroscopic measurements, and X-ray photoemission spectroscopy. Nanoparticles with a predominance of Ag or Ag3PO4 were obtained according to the type of reducing agent used. All composites were tested for antimicrobial and antibiofilm activities against Gram-positive and Gram-negative (Staphylococcus aureus and Pseudomonas aeruginosa, respectively) bacteria and for cytotoxicity towards human skin keratinocytes and human fibroblasts. The nature of the nanoparticles, Ag or Ag3PO4, and their predominance seemed to affect the in vitro silver release and the antimicrobial and antibiofilm activities. The composites obtained by the citrate-assisted reduction gave rise to the best results.

19.
Plants (Basel) ; 12(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36840253

RESUMEN

Currently, there is an increasing interest in the search of natural derived materials as valuable substitutes for microplastics. One of the categories investigated, represented by thickening agents deriving from agri-food waste and apple pomace (AP), was considered of interest. In this study AP was submitted to three different treatments and drying conditions (oven drying at 55 °C for 12 h; homogenization and oven drying at 55 °C for 12 h; homogenization and freeze-drying), and then grinded and sieved obtaining three different dimensional fractions (>400 µm, 250-400 µm and <250 µm). The hydroalcoholic extracts of these fractions, obtained by ultrasound-assisted extraction, were analyzed to compare their total phenol content (TPC), antioxidant properties, and phenol profile. Correlation studies between the above-indicated parameters were also carried out. The highest values of TPC, antioxidant capacity, and phenol content (determined by liquid chromatography) were found for oven dried AP (250-400 µm) or homogenized and freeze-dried (>400 µm) samples. Both samples were most suitable to form stable hydrogels and the sample obtained after drying at 55 °C showed the best performances in terms of ability to form a stable hydrogel. Among the studied treatments and drying conditions, the oven dried AP was demonstrated to be an interesting stabilizing material with potential applications in many fields (such as food, cosmetics, and nutraceuticals) showing both antioxidant activity and thickening capacity.

20.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36768851

RESUMEN

In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.


Asunto(s)
Vesículas Extracelulares , Microbiota , Humanos , Femenino , Embarazo , Monocitos/metabolismo , Inflamasomas/metabolismo , Líquido Amniótico , Proteómica , Vesículas Extracelulares/metabolismo , Endotoxinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA