Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Haematologica ; 105(4): 1032-1041, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31296574

RESUMEN

CD38 is expressed in several types of non-Hodgkin lymphoma (NHL) and constitutes a promising target for antibody-based therapy. Daratumumab (Darzalex) is a first-in-class anti-CD38 antibody approved for the treatment of relapsed/refractory (R/R) multiple myeloma (MM). It has also demonstrated clinical activity in Waldenström macroglobulinaemia and amyloidosis. Here, we have evaluated the activity and mechanism of action of daratumumab in preclinical in vitro and in vivo models of mantle cell lymphoma (MCL), follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL), as monotherapy or in combination with standard chemo-immunotherapy. In vitro, daratumumab engages Fc-mediated cytotoxicity by antibody-dependent cell cytotoxicity and antibody-dependent cell phagocytosis in all lymphoma subtypes. In the presence of human serum, complement-dependent cell cytotoxicity was marginally engaged. We demonstrated by Selective Plane Illumination Microscopy that daratumumab fully penetrated a three-dimensional (3D) lymphoma organoid and decreased organoid volume. In vivo, daratumumab completely prevents tumor outgrowth in models of MCL and FL, and shows comparable activity to rituximab in a disseminated in vivo model of blastic MCL. Moreover, daratumumab improves overall survival (OS) in a mouse model of transformed CD20dim FL, where rituximab showed limited activity. Daratumumab potentiates the antitumor activity of CHOP and R-CHOP in MCL and FL xenografts. Furthermore, in a patient-derived DLBCL xenograft model, daratumumab anti-tumor activity was comparable to R-CHOP and the addition of daratumumab to either CHOP or R-CHOP led to full tumor regression. In summary, daratumumab constitutes a novel therapeutic opportunity in certain scenarios and these results warrant further clinical development.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Linfoma no Hodgkin/terapia , Adulto , Linfocitos B , Humanos , Inmunoterapia , Rituximab
2.
Clin Cancer Res ; 23(6): 1493-1505, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27637890

RESUMEN

Purpose: To establish a proof-of-concept for the efficacy of the anti-CD38 antibody daratumumab in the poor prognosis CD38+ chronic lymphocytic leukemia (CLL) subtype.Experimental Design: The mechanism of action of daratumumab was assessed in CLL primary cells and cell lines using peripheral blood mononuclear cells to analyze antibody-dependent cell cytotoxicity (ADCC), murine and human macrophages to study antibody-dependent cell phagocytosis (ADCP), or human serum to analyze complement-dependent cytotoxicity (CDC). The effect of daratumumab on CLL cell migration and adhesion to extracellular matrix was characterized. Daratumumab activity was validated in two in vivo models.Results: Daratumumab demonstrated efficient lysis of patient-derived CLL cells and cell lines by ADCC in vitro and ADCP both in vitro and in vivo whereas exhibited negligible CDC in these cells. To demonstrate the therapeutic effect of daratumumab in CLL, we generated a disseminated CLL mouse model with the CD38+ MEC2 cell line and CLL patient-derived xenografts (CLL-PDX). Daratumumab significantly prolonged overall survival of MEC2 mice, completely eliminated cells from the infiltrated organs, and significantly reduced disease burden in the spleen of CLL-PDX. The effect of daratumumab on patient-derived CLL cell dissemination was demonstrated in vitro by its effect on CXCL12-induced migration and in vivo by interfering with CLL cell homing to spleen in NSG mice. Daratumumab also reduced adhesion of CLL cells to VCAM-1, accompanied by downregulation of the matrix metalloproteinase MMP9.Conclusions: These unique and substantial effects of daratumumab on CLL viability and dissemination support the investigation of its use in a clinical setting of CLL. Clin Cancer Res; 23(6); 1493-505. ©2016 AACR.


Asunto(s)
ADP-Ribosil Ciclasa 1/genética , Anticuerpos Monoclonales/administración & dosificación , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , ADP-Ribosil Ciclasa 1/inmunología , Animales , Línea Celular Tumoral , Citofagocitosis/efectos de los fármacos , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/patología , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA