Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Parkinsons Dis ; 2024: 5580870, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939534

RESUMEN

Background: Postural instability and gait difficulties (PIGD) are a significant cause of falls, mobility loss, and lower quality of life in Parkinson's disease (PD). The connection between PD progression and diminished strength in the lower limbs has been acknowledged. However, the identification of specific muscle groups linked to PIGD and non-PIGD motor features is still unknown. Objective: To explore the relationship between the strength of specific lower limb muscle groups, along with muscle mass, and their associations with PIGD, PIGD subtypes, and non-PIGD motor features in PD. Methods: 95 PD participants underwent detailed motor and non-motor test batteries, including lower limb isometric strength testing and whole-body lean mass assessments. Correlation analysis and univariate and multivariate linear/logistic forward stepwise regression were performed to test associations between PIGD and non-PIGD motor features with normalized value (z-score) of lower limb muscle strength and measures of lean mass. Results: Multivariate regression analysis, adjusted for age, gender, and levodopa equivalent dose, revealed that hip abductor strength was significantly associated with overall PIGD motor severity ratings (p < 0.001), impaired balance (p < 0.001), and non-PIGD Parkinsonian motor features (p < 0.001). Conversely, hip extensor strength was significantly associated with falls, slow walking, and FoG motor features (p=0.016; p=0.003; p=0.020, respectively). Conclusion: We found that lower hip abductor strength was associated with PIGD and non-PIGD motor features. The association between non-PIGD motor features may suggest specific vulnerability of the hip abductors as part of a proposed brain-muscle loop hypothesis in PD. Moreover, lower hip extensor strength correlated with falls, slow walking, and FoG.

2.
Parkinsonism Relat Disord ; 107: 105251, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566525

RESUMEN

BACKGROUND: Postural instability and gait difficulties (PIGD) are a significant cause of disability and loss of quality of life (QoL) in Parkinson's Disease. Most research on clinical predictors of PIGD measures have focused on individual clinical often motor performance variables, However, PIGD motor features often result in fear of falling (FoF) lowering a patient's mobility self-efficacy. The purpose of this study was to assess composite measures of motor and self-efficacy determinants PIGD motor features in PD and compare these to analysis of individual clinical metrics. METHODS: 75 PD participants underwent detailed motor and non-motor test batteries. Principal component analysis (PCA) was used to identify clusters of covarying correlates of slow walking, imbalance, falls, freezing of gait, FoG and compare these to traditional univariate analyses. RESULTS: A single PCA-derived composite measure of motor performance and self-efficacy of mobility was the most robust determinant of all PIGD motor features except for falls. In contrast, analysis of the individual clinical variables showed more limited and diverging findings, including evidence of better cognitive performance but more severe motor parkinsonian ratings in the fall group. CONCLUSION: There are robust associations between composite measures of motor performance and self-efficacy of mobility and all PIGD motor features except for falls. Univariate analysis of individual clinical measures showed limited correlates of PIGD motor features. Patient's own perception of motor performance, FoF, and QoL deserve more attention as PIGD therapeutic targets in PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/psicología , Calidad de Vida , Trastornos Neurológicos de la Marcha/etiología , Autoeficacia , Miedo/psicología , Marcha , Equilibrio Postural
3.
Mov Disord ; 37(11): 2257-2262, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36373942

RESUMEN

BACKGROUND: The vestibular system has been implicated in the pathophysiology of episodic motor impairments in Parkinson's disease (PD), but specific evidence remains lacking. OBJECTIVE: We investigated the relationship between the presence of freezing of gait and falls and postural failure during the performance on Romberg test condition 4 in patients with PD. METHODS: Modified Romberg sensory conflict test, fall, and freezing-of-gait assessments were performed in 92 patients with PD (70 males/22 females; mean age, 67.6 ± 7.4 years; Hoehn and Yahr stage, 2.4 ± 0.6; mean Montreal Cognitive Assessment, 26.4 ± 2.8). RESULTS: Failure during Romberg condition 4 was present in 33 patients (35.9%). Patients who failed the Romberg condition 4 were older and had more severe motor and cognitive impairments than those without. About 84.6% of all patients with freezing of gait had failure during Romberg condition 4, whereas 13.4% of patients with freezing of gait had normal performance (χ2  = 15.6; P < 0.0001). Multiple logistic regression analysis showed that the regressor effect of Romberg condition 4 test failure for the presence of freezing of gait (Wald χ2  = 5.0; P = 0.026) remained significant after accounting for the degree of severity of parkinsonian motor ratings (Wald χ2  = 6.2; P = 0.013), age (Wald χ2  = 0.3; P = 0.59), and cognition (Wald χ2  = 0.3; P = 0.75; total model: Wald χ2  = 16.1; P < 0.0001). Patients with PD who failed the Romberg condition 4 (45.5%) did not have a statistically significant difference in frequency of patients with falls compared with patients with PD without abnormal performance (30.5%; χ2  = 2.1; P = 0.15). CONCLUSIONS: The presence of deficient vestibular processing may have specific pathophysiological relevance for freezing of gait, but not falls, in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Enfermedad de Parkinson/complicaciones , Trastornos Neurológicos de la Marcha/etiología , Equilibrio Postural/fisiología , Marcha , Examen Neurológico
4.
Artículo en Inglés | MEDLINE | ID: mdl-33746519

RESUMEN

Chronic lower back pain is one of the most common medical conditions leading to a significant decrease in quality of life. This study retrospectively analyzed whether the AxioBionics Wearable Therapy Pain Management (WTPM) System, a customized and wearable electrical stimulation device, alleviated chronic lower back pain, and improved muscular function. This study assessed self-reported pain levels using the visual analog scale before and during the use of the AxioBionics WTPM System when performing normal activities such as sitting, standing, and walking (n = 69). Results showed that both at-rest and activity-related pain were significantly reduced during treatment with the AxioBionics WTPM System (% reduction in pain: 64% and 60%, respectively; P < .05). Thus, this study suggests that the AxioBionics WTPM System is efficacious in treating chronic lower back pain even when other therapies have failed to sufficiently decrease reported pain levels.

5.
Expert Rev Neurother ; 19(12): 1229-1251, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31418599

RESUMEN

Introduction: Gait and balance disorders in Parkinson's disease (PD) represent a major therapeutic challenge as frequent falls and freezing of gait impair quality of life and predict mortality. Limited dopaminergic therapy responses implicate non-dopaminergic mechanisms calling for alternative therapies.Areas covered: The authors provide a review that encompasses pathophysiological changes involved in axial motor impairments in PD, pharmacological approaches, exercise, and physical therapy, improving physical activity levels, invasive and non-invasive neurostimulation, cueing interventions and wearable technology, and cognitive interventions.Expert opinion: There are many promising therapies available that, to a variable degree, affect gait and balance disorders in PD. However, not one therapy is the 'silver bullet' that provides full relief and ultimately meaningfully improves the patient's quality of life. Sedentariness, apathy, and emergence of frailty in advancing PD, especially in the setting of medical comorbidities, are perhaps the biggest threats to experience sustained benefits with any of the available therapeutic options and therefore need to be aggressively treated as early as possible. Multimodal or combination therapies may provide complementary benefits to manage axial motor features in PD, but selection of treatment modalities should be tailored to the individual patient's needs.


Asunto(s)
Trastornos Neurológicos de la Marcha/terapia , Enfermedad de Parkinson/terapia , Equilibrio Postural , Trastornos Neurológicos de la Marcha/etiología , Humanos , Enfermedad de Parkinson/complicaciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA