Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38511404

RESUMEN

Bacterial genomes are folded and organized into compact yet dynamic structures, called nucleoids. Nucleoid orchestration involves many factors at multiple length scales, such as nucleoid-associated proteins and liquid-liquid phase separation, and has to be compatible with replication and transcription. Possibly, genome organization plays an intrinsic role in transcription regulation, in addition to classical transcription factors. In this review, we provide arguments supporting this view using the Gram-positive bacterium Bacillus subtilis as a model. Proteins BsSMC, HBsu and Rok all impact the structure of the B. subtilis chromosome. Particularly for Rok, there is compelling evidence that it combines its structural function with a role as global gene regulator. Many studies describe either function of Rok, but rarely both are addressed at the same time. Here, we review both sides of the coin and integrate them into one model. Rok forms unusually stable DNA-DNA bridges and this ability likely underlies its repressive effect on transcription by either preventing RNA polymerase from binding to DNA or trapping it inside DNA loops. Partner proteins are needed to change or relieve Rok-mediated gene repression. Lastly, we investigate which features characterize H-NS-like proteins, a family that, at present, lacks a clear definition.

2.
Nucleic Acids Res ; 50(21): 12166-12185, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36408910

RESUMEN

Nucleoid-associated proteins (NAPs) play a central role in chromosome organization and environment-responsive transcription regulation. The Bacillus subtilis-encoded NAP Rok binds preferentially AT-rich regions of the genome, which often contain genes of foreign origin that are silenced by Rok binding. Additionally, Rok plays a role in chromosome architecture by binding in genomic clusters and promoting chromosomal loop formation. Based on this, Rok was proposed to be a functional homolog of E. coli H-NS. However, it is largely unclear how Rok binds DNA, how it represses transcription and whether Rok mediates environment-responsive gene regulation. Here, we investigated Rok's DNA binding properties and the effects of physico-chemical conditions thereon. We demonstrate that Rok is a DNA bridging protein similar to prototypical H-NS-like proteins. However, unlike these proteins, the DNA bridging ability of Rok is not affected by changes in physico-chemical conditions. The DNA binding properties of the Rok interaction partner sRok are affected by salt concentration. This suggests that in a minority of Bacillus strains Rok activity can be modulated by sRok, and thus respond indirectly to environmental stimuli. Despite several functional similarities, the absence of a direct response to physico-chemical changes establishes Rok as disparate member of the H-NS family.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Proteínas de Unión al ADN , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA