Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Clin Transl Radiat Oncol ; 45: 100744, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38406645

RESUMEN

Background: MRI-guidance may aid better discrimination between Organs at Risk (OARs) and target volumes in proximity of the mediastinum. We report the first clinical experiences with Stereotactic Body Radiotherapy (SBRT) of (ultra)central lung tumours on a 1.5 T MR-linac. Materials and Methods: Patients with an (ultra)central lung tumour were selected for MR-linac based SBRT treatment. A T2-weighted 3D sequence MRI acquired during free breathing was used for daily plan adaption. Prior to each fraction, contours of Internal Target Volume (ITV) and OARs were deformably propagated and amended by a radiation oncologist. Inter-fractional changes in volumes and coverage of target volumes as well as doses in OARs were evaluated in offline and online treatment plans. Results: Ten patients were treated and completed 60 Gy in 8 or 12 fractions. In total 104 fractions were delivered. The median time in the treatment room was 41 min with a median beam-on time of 8.9 min. No grade ≥3 acute toxicity was observed. In two patients, the ITV significantly decreased during treatment (58 % and 37 %, respectively) due to tumour shrinkage. In the other patients, 81 % of online ITVs were within ±15 % of the volume of fraction 1. Comparison with the pre-treatment plan showed that ITV coverage of the online plan was similar in 52 % and improved in 34 % of cases. Adaptation to meet OAR constraints, led to decreased ITV coverage in 14 %. Conclusions: We describe the workflow for MR-guided Radiotherapy and the feasibility of using 1.5 T MR-linac for SBRT of (ultra) central lung tumours.

2.
Clin Transl Radiat Oncol ; 34: 82-89, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35372703

RESUMEN

Purpose: This R-Ideal stage 1b/2a study describes the workflow and feasibility of long-course fractionated online adaptive MR-guided chemoradiotherapy with reduced CTV-to-PTV margins on the 1.5T MR-Linac for patients with esophageal cancer. Methods: Patients with esophageal cancer scheduled to undergo chemoradiation were treated on a 1.5T MR-Linac. Daily MR-images were acquired for online contour adaptation and replanning. Contours were manually adapted to match the daily anatomy and an isotropic CTV-to-PTV margin of 6 mm was applied. Time was recorded for all individual steps in the workflow. Feasibility and patient tolerability were defined as on-table time of ≤60 min and completion of >95% of the fractions on the MR-Linac, respectively. Positioning verification and post-treatment MRIs were retrospectively analyzed and dosimetric parameters were compared to standard non-adaptive conventional treatment plans. Results: Nine patients with esophageal cancer were treated with chemoradiation; eight patients received 41.4 Gy in 23 fractions and one received 50.4 Gy in 28 fractions. Four patients received all planned fractions on the MR-Linac, whereas for two patients >5% of fractions were rescheduled to a conventional linac for reasons of discomfort. A total of 183 (86%) of 212 scheduled fractions were successfully delivered on the MR-Linac. Three fractions ended prematurely due to technical issues and 26 fractions were rescheduled on a conventional linac due to MR-Linac downtime (n = 10), logistical reasons (n = 3) or discomfort (n = 13).The median time per fraction was 53 min (IQR = 3 min). Daily adapted MR-Linac plans had similar target coverage, whereas dose to the organs-at-risk was significantly reduced compared to conventional treatment (26% and 12% reduction in mean lung and heart dose, respectively). Conclusion: Daily online adaptive fractionated chemoradiotherapy with reduced PTV margins is moderately feasible for esophageal cancer and results in better sparing of heart and lungs. Future studies should focus on further optimization and acceleration of the current workflow.

3.
Phys Med Biol ; 66(20)2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34243173

RESUMEN

Purpose.To assess the feasibility of prostate cancer radiotherapy for patients with a hip implant on an 1.5 T MRI-Linac (MRL) in terms of geometrical image accuracy, image quality, and plan quality.Methods.Pretreatment MRI images on a 1.5 T MRL and 3 T MRI consisting of a T2-weighted 3D delineation scan and main magnetic field homogeneity (B0) scan were performed in six patients with a unilateral hip implant. System specific geometrical errors due to gradient nonlinearity were determined for the MRL. Within the prostate and skin contour,B0inhomogeneity, gradient nonlinearity error and the total geometrical error (vector summation of the prior two) was determined. Image quality was determined by visually scoring the extent of implant-born image artifacts. A treatment planning study was performed on five patients to quantify the impact of the implant on plan quality, in which conventional MRL IMRT plans were created, as well as plans which avoid radiation through the left or right femur.Results.The total maximum geometrical error in the prostate was <1 mm and the skin contour <1.7 mm; in all cases the machine-specific gradient error was most dominant. TheB0error for the MRlinac MRI could partly be predicted based on the pre-treatment 3 T scan. Image quality for all patients was sufficient at 1.5 T MRL. Plan comparison showed that, even with avoidance of the hips, in all cases sufficient target coverage could be obtained with similar D1cc and D5cc to rectum and bladder, while V28Gy was slightly poorer in only the rectum for femur avoidance.Conclusion.We showed that geometrical accuracy, image quality and plan quality for six prostate patients with a hip implant or hip fixation treated on a 1.5 T MRL did not show relevant deterioration for the used image settings, which allowed safe treatment.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Imagen por Resonancia Magnética , Masculino , Aceleradores de Partículas , Próstata , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
4.
Radiother Oncol ; 161: 16-22, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33992628

RESUMEN

PURPOSE: This study aimed to assess the smallest clinical target volume (CTV) to planned target volume (PTV) margins for esophageal cancer radiotherapy using daily online registration to the bony anatomy that yield full dosimetric coverage over the course of treatment. METHODS: 29 esophageal cancer patients underwent six T2-weighted MRI scans at weekly intervals. An online bone-match image-guided radiotherapy treatment of five fractions was simulated for each patient. Multiple conformal treatment plans with increasing margins around the CTV were created for each patient. Then, the dose was warped to obtain an accumulated dose per simulated fraction. Full target coverage by 95% of the prescribed dose was assessed as a function of margin expansion in six directions. If target coverage in a single direction was accomplished, then the respective margin remained fixed for the subsequent dose plans. Margins in uncovered directions were increased in a new dose plan until full target coverage was achieved. RESULTS: The smallest set of CTV-to-PTV margins that yielded full dosimetric CTV coverage was 8 mm in posterior and right direction, 9 mm in anterior and cranial direction and 10 mm in left and caudal direction for 27 out of 29 patients. In two patients the curvature of the esophagus considerably changed between fractions, which required a 17 and 23 mm margin in right direction. CONCLUSION: Accumulated dose analysis revealed that CTV-to-PTV treatment margins of 8, 9 and 10 mm in posterior & right, anterior & cranial and left & caudal direction, respectively, are sufficient to account for interfraction tumor variations over the course of treatment when applying a daily online bone match. However, two patients with extreme esophageal interfraction motion were insufficiently covered with these margins and were identified as patients requiring replanning to achieve full target coverage.


Asunto(s)
Neoplasias Esofágicas , Neoplasias de la Próstata , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias Esofágicas/radioterapia , Humanos , Masculino , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
5.
Phys Med Biol ; 66(9)2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33827065

RESUMEN

4D-MRI is becoming increasingly important for daily guidance of thoracic and abdominal radiotherapy. This study exploits the simultaneous multi-slice (SMS) technique to accelerate the acquisition of a balanced turbo field echo (bTFE) and a turbo spin echo (TSE) coronal 4D-MRI sequence performed on 1.5 T MRI scanners. SMS single-shot bTFE and TSE sequences were developed to acquire a stack of 52 coronal 2D images over 30 dynamics. Simultaneously excited slices were separated by half the field of view. Slices intersecting with the liver-lung interface were used as navigator slices. For each navigator slice location, an end-exhale dynamic was automatically identified, and used to derive the self-sorting signal by rigidly registering the remaining dynamics. Navigator slices were sorted into 10 amplitude bins, and the temporal relationship of simultaneously excited slices was used to generate sorted 4D-MRIs for 12 healthy volunteers. The self-sorting signal was validated using anin vivopeak-to-peak motion analysis. The smoothness of the liver-lung interface was quantified by comparing to sagittal cine images acquired directly after the SMS-4D-MRI sequence. To ensure compatibility with the MR-linac radiotherapy workflow, the 4D-MRIs were transformed into 3D mid-position (MidP) images using deformable image registration. Consistency of the deformable vector fields was quantified in terms of the distance discordance metric (DDM) in the body. The SMS-4D-TSE sequence was additionally acquired for 3 lung cancer patients to investigate tumor visibility. SMS-4D-MRI acquisition and processing took approximately 7 min. 4D-MRI reconstruction was possible for 26 out of 27 acquired datasets. Missing data in the sorted 4D-MRIs varied from 4%-26% for the volunteers and varied from 8%-24% for the patients. Peak-to-peak (SD) amplitudes analysis agreed within 1.8 (1.1) mm and 0.9 (0.4) mm between the sorted 4D-MRIs and the self-sorting signals of the volunteers and patients, respectively. Liver-lung interface smoothness was found to be in the range of 0.6-3.1 mm for volunteers. The percentage of DDM values smaller than 2 mm was in the range of 85%-89% and 86%-92% for the volunteers and patients, respectively. Lung tumors were clearly visibility in the SMS-4D-TSE images and MidP images. Two fast SMS-accelerated 4D-MRI sequences were developed resulting in T2/T1or T2weighted contrast. The SMS-4D-MRIs and derived 3D MidP-MRIs yielded anatomically plausible images and good tumor visibility. SMS-4D-MRI is therefore a strong candidate to be used for treatment simulation and daily guidance of thoracic and abdominal MR-guided radiotherapy.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagenología Tridimensional , Neoplasias Hepáticas , Movimiento (Física) , Aceleradores de Partículas
6.
Radiother Oncol ; 151: 88-94, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32622779

RESUMEN

PURPOSE: To evaluate prostate intrafraction motion using MRI during the full course of online adaptive MR-Linac radiotherapy (RT) fractions, in preparation of MR-guided extremely hypofractionated RT. MATERIAL AND METHODS: Five low and intermediate risk prostate cancer patients were treated with 20 × 3.1 Gy fractions on a 1.5T MR-Linac. Each fraction, initial MRI (Pre) scans were obtained at the start of every treatment session. Pre-treatment planning MRI contours were propagated and adapted to this Pre scan after which plan re-optimization was started in the treatment planning system followed by dose delivery. 3D Cine-MR imaging was started simultaneously with beam-on and acquired over the full beam-on period. Prostate intrafraction motion in this cine-MR was determined with a previously validated soft-tissue contrast based tracking algorithm. In addition, absolute accuracy of the method was determined using a 4D phantom. RESULTS: Prostate motion was completely automatically determined over the full on-couch period (approx. 45 min) with no identified mis-registrations. The translation 95% confidence intervals are within clinically applied margins of 5 mm, and plan adaption for intrafraction motion was required in only 4 out of 100 fractions. CONCLUSION: This is the first study to investigate prostate intrafraction motions during entire MR-guided RT sessions on an MR-Linac. We have shown that high quality 3D cine-MR imaging and prostate tracking during RT is feasible with beam-on. The clinically applied margins of 5 mm have proven to be sufficient for these treatments and may potentially be further reduced using intrafraction plan adaptation guided by cine-MR imaging.


Asunto(s)
Neoplasias de la Próstata , Planificación de la Radioterapia Asistida por Computador , Humanos , Imagen por Resonancia Magnética , Masculino , Movimiento , Aceleradores de Partículas , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia
7.
Radiother Oncol ; 147: 1-7, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32234611

RESUMEN

PURPOSE: This study aimed to quantify the coverage probability for esophageal cancer radiotherapy as a function of a preset margin for online MR-guided and (CB)CT-guided radiotherapy. METHODS: Thirty esophageal cancer patients underwent six T2-weighted MRI scans, 1 prior to treatment and 5 during neoadjuvant chemoradiotherapy at weekly intervals. Gross tumor volume (GTV) and clinical target volume (CTV) were delineated on each individual scan. Follow-up scans were rigidly aligned to the bony anatomy and to the clinical target volume itself, mimicking two online set-up correction strategies: a conventional CBCT-guided set-up and a MR-guided set-up, respectively. Geometric coverage probability of the propagated CTVs was assessed for both set-up strategies by expanding the reference CTV with an isotropic margin varying from 0 mm to 15 mm with an increment of 1 mm. RESULTS: A margin of 10 mm could resolve the interfractional changes for 118 out of the 132 (89%) analyzed fractions when applying a bone-match registration, whereas the CTV was adequately covered in 123 (93%) fractions when the registration was directly performed at the CTV itself (soft-tissue registration). Closer analyses revealed that target coverage violation predominantly occurred for distal tumors near the junction and into the cardia. CONCLUSION: Online MR-guided soft-tissue registration protocols exhibited modest improvements of the geometric target coverage probability as compared to online CBCT-guided bone match protocols. Therefore, highly conformal target irradiation using online MR-guidance can only be achieved by implementing on-table adaptive workflows where new treatment plans are daily generated based on the anatomy of the day.


Asunto(s)
Neoplasias Esofágicas , Radioterapia Conformacional , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Humanos , Imagen por Resonancia Magnética , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
8.
Clin Transl Radiat Oncol ; 14: 33-39, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30519647

RESUMEN

BACKGROUND AND PURPOSE: Accurate delineation of the primary tumour is vital to the success of radiotherapy and even more important for successful boost strategies, aiming for improved local control in oesophageal cancer patients. Therefore, the aim was to assess delineation variability of the gross tumour volume (GTV) between CT and combined PET-CT in oesophageal cancer patients in a multi-institutional study. MATERIALS AND METHODS: Twenty observers from 14 institutes delineated the primary tumour of 6 cases on CT and PET-CT fusion. The delineated volumes, generalized conformity index (CIgen) and standard deviation (SD) in position of the most cranial/caudal slice over the observers were evaluated. For the central delineated region, perpendicular distance between median surface GTV and each individual GTV was evaluated as in-slice SD. RESULTS: After addition of PET, mean GTVs were significantly smaller in 3 cases and larger in 1 case. No difference in CIgen was observed (average 0.67 on CT, 0.69 on PET-CT). On CT cranial-caudal delineation variation ranged between 0.2 and 1.5 cm SD versus 0.2 and 1.3 cm SD on PET-CT. After addition of PET, the cranial and caudal variation was significantly reduced in 1 and 2 cases, respectively. The in-slice SD was on average 0.16 cm in both phases. CONCLUSION: In some cases considerable GTV delineation variability was observed at the cranial-caudal border. PET significantly influenced the delineated volume in four out of six cases, however its impact on observer variation was limited.

9.
BMC Cancer ; 18(1): 1006, 2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30342494

RESUMEN

BACKGROUND: Nearly one third of patients undergoing neoadjuvant chemoradiotherapy (nCRT) for locally advanced esophageal cancer have a pathologic complete response (pCR) of the primary tumor upon histopathological evaluation of the resection specimen. The primary aim of this study is to develop a model that predicts the probability of pCR to nCRT in esophageal cancer, based on diffusion-weighted magnetic resonance imaging (DW-MRI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and 18F-fluorodeoxyglucose positron emission tomography with computed tomography (18F-FDG PET-CT). Accurate response prediction could lead to a patient-tailored approach with omission of surgery in the future in case of predicted pCR or additional neoadjuvant treatment in case of non-pCR. METHODS: The PRIDE study is a prospective, single arm, observational multicenter study designed to develop a multimodal prediction model for histopathological response to nCRT for esophageal cancer. A total of 200 patients with locally advanced esophageal cancer - of which at least 130 patients with adenocarcinoma and at least 61 patients with squamous cell carcinoma - scheduled to receive nCRT followed by esophagectomy will be included. The primary modalities to be incorporated in the prediction model are quantitative parameters derived from MRI and 18F-FDG PET-CT scans, which will be acquired at fixed intervals before, during and after nCRT. Secondary modalities include blood samples for analysis of the presence of circulating tumor DNA (ctDNA) at 3 time-points (before, during and after nCRT), and an endoscopy with (random) bite-on-bite biopsies of the primary tumor site and other suspected lesions in the esophagus as well as an endoscopic ultrasonography (EUS) with fine needle aspiration of suspected lymph nodes after finishing nCRT. The main study endpoint is the performance of the model for pCR prediction. Secondary endpoints include progression-free and overall survival. DISCUSSION: If the multimodal PRIDE concept provides high predictive performance for pCR, the results of this study will play an important role in accurate identification of esophageal cancer patients with a pCR to nCRT. These patients might benefit from a patient-tailored approach with omission of surgery in the future. Vice versa, patients with non-pCR might benefit from additional neoadjuvant treatment, or ineffective therapy could be stopped. TRIAL REGISTRATION: The article reports on a health care intervention on human participants and was prospectively registered on March 22, 2018 under ClinicalTrials.gov Identifier: NCT03474341 .


Asunto(s)
Quimioradioterapia/métodos , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/terapia , Terapia Neoadyuvante/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Cuidados Preoperatorios/métodos , Neoplasias Esofágicas/epidemiología , Estudios de Seguimiento , Humanos , Resultado del Tratamiento
10.
J Anat ; 230(2): 262-271, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27659172

RESUMEN

An organized layer of connective tissue coursing from aorta to esophagus was recently discovered in the mediastinum. The relations with other peri-esophageal fascias have not been described and it is unclear whether this layer can be visualized by non-invasive imaging. This study aimed to provide a comprehensive description of the peri-esophageal fascias and determine whether the connective tissue layer between aorta and esophagus can be visualized by magnetic resonance imaging (MRI). First, T2-weighted MRI scanning of the thoracic region of a human cadaver was performed, followed by histological examination of transverse sections of the peri-esophageal tissue between the thyroid gland and the diaphragm. Secondly, pretreatment motion-triggered MRI scans were prospectively obtained from 34 patients with esophageal cancer and independently assessed by two radiologists for the presence and location of the connective tissue layer coursing from aorta to esophagus. A layer of connective tissue coursing from the anterior aspect of the descending aorta to the left lateral aspect of the esophagus, with a thin extension coursing to the right pleural reflection, was visualized ex vivo in the cadaver on MR images, macroscopic tissue sections, and after histologic staining, as well as on in vivo MR images. The layer connecting esophagus and aorta was named 'aorto-esophageal ligament' and the layer connecting aorta to the right pleural reflection 'aorto-pleural ligament'. These connective tissue layers divides the posterior mediastinum in an anterior compartment containing the esophagus, (carinal) lymph nodes and vagus nerve, and a posterior compartment, containing the azygos vein, thoracic duct and occasionally lymph nodes. The anterior compartment was named 'peri-esophageal compartment' and the posterior compartment 'para-aortic compartment'. The connective tissue layers superior to the aortic arch and at the diaphragm corresponded with the currently available anatomic descriptions. This study confirms the existence of the previously described connective tissue layer coursing from aorta to esophagus, challenging the long-standing paradigm that no such structure exists. A comprehensive, detailed description of the peri-esophageal fascias is provided and, furthermore, it is shown that the connective tissue layer coursing from aorta to esophagus can be visualized in vivo by MRI.


Asunto(s)
Tejido Conectivo/diagnóstico por imagen , Tejido Conectivo/patología , Esófago/diagnóstico por imagen , Esófago/patología , Técnicas Histológicas/métodos , Imagen por Resonancia Magnética/métodos , Anciano , Cadáver , Técnicas Histológicas/normas , Humanos , Imagen por Resonancia Magnética/normas , Masculino
11.
Phys Med Biol ; 61(4): 1596-607, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26836010

RESUMEN

The in vivo electric conductivity (σ) values of tissue are essential for accurate electromagnetic simulations and specific absorption rate (SAR) assessment for applications such as thermal dose computations in hyperthermia. Currently used σ-values are mostly based on ex vivo measurements. In this study the conductivity of human muscle, bladder content and cervical tumors is acquired non-invasively in vivo using MRI. The conductivity of 20 cervical cancer patients was measured with the MR-based electric properties tomography method on a standard 3T MRI system. The average in vivo σ-value of muscle is 14% higher than currently used in human simulation models. The σ-value of bladder content is an order of magnitude higher than the value for bladder wall tissue that is used for the complete bladder in many models. Our findings are confirmed by various in vivo animal studies from the literature. In cervical tumors, the observed average conductivity was 13% higher than the literature value reported for cervical tissue. Considerable deviations were found for the electrical conductivity observed in this study and the commonly used values for SAR assessment, emphasizing the importance of acquiring in vivo conductivity for more accurate SAR assessment in various applications.


Asunto(s)
Conductividad Eléctrica , Hipertermia Inducida/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias del Cuello Uterino/terapia , Femenino , Humanos , Hipertermia Inducida/normas
12.
Clin Radiol ; 70(1): 81-95, 2015 01.
Artículo en Inglés | MEDLINE | ID: mdl-25172205

RESUMEN

Integrated 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) PET/CT and magnetic resonance imaging (MRI) with functional features of diffusion-weighted imaging (DWI) are advancing imaging technologies that have current and future potential to overcome important limitations of conventional staging methods in the management of patients with oesophageal cancer. PET/CT has emerged as an important part of the standard work-up of patients with oesophageal cancer. Besides its important ability to detect unsuspected metastatic disease, PET/CT may be useful in the assessment of treatment response, radiation treatment planning, and detection of recurrent disease. In addition, high-resolution T2-weighted MRI and DWI have potential complementary roles. Recent improvements in MRI protocols and techniques have resulted in better imaging quality with the potential to bring improvement in staging, radiation treatment planning, and the assessment of treatment response. Optimal use and understanding of PET/CT and MRI in oesophageal cancer will contribute to the impact of these advancing technologies in tailoring treatment to the individual patient and achieving best possible outcomes. In this article, we graphically outline the current and potential future roles of PET/CT and MRI in the multidisciplinary management of oesophageal cancer.


Asunto(s)
Neoplasias Esofágicas/diagnóstico , Ganglios Linfáticos , Metástasis de la Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/diagnóstico , Protocolos Antineoplásicos , Imagen de Difusión por Resonancia Magnética/métodos , Fluorodesoxiglucosa F18 , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tomografía Computarizada por Rayos X/métodos
13.
NMR Biomed ; 24(9): 1038-46, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21294206

RESUMEN

In vivo MRS of the human brain at ultrahigh field allows for the identification of a large number of metabolites at higher spatial resolutions than currently possible in clinical practice. However, the in vivo localization of single-voxel spectroscopy has been shown to be challenging at ultrahigh field because of the low bandwidth of refocusing radiofrequency (RF) pulses. Thus far, the proposed methods for localized MRS at 7 T suffer from long TE, inherent signal loss and/or a large chemical shift displacement artifact that causes a spatial displacement between resonances, and results in a decreased efficiency in editing sequences. In this work, we show that, by driving a standard volume coil with two RF amplifiers, focusing the B 1+ field in a certain location and using high-bandwidth adiabatic refocusing pulses, a semi-LASER (semi-localized by adiabatic selective refocusing) localization is feasible at short TE in the human brain with full signal acquisition and a low chemical shift displacement artifact at 7 T.


Asunto(s)
Espectroscopía de Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/métodos , Protones , Ondas de Radio , Absorción , Simulación por Computador , Campos Electromagnéticos , Humanos , Metaboloma , Marcadores de Spin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA