Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Nat Methods ; 21(7): 1175-1184, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886577

RESUMEN

In a human cell, thousands of replication forks simultaneously coordinate duplication of the entire genome. The rate at which this process occurs might depend on the epigenetic state of the genome and vary between, or even within, cell types. To accurately measure DNA replication speeds, we developed single-cell 5-ethynyl-2'-deoxyuridine sequencing to detect nascent replicated DNA. We observed that the DNA replication speed is not constant but increases during S phase of the cell cycle. Using genetic and pharmacological perturbations we were able to alter this acceleration of replication and conclude that DNA damage inflicted by the process of transcription limits the speed of replication during early S phase. In late S phase, during which less-transcribed regions replicate, replication accelerates and approaches its maximum speed.


Asunto(s)
Replicación del ADN , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Desoxiuridina/análogos & derivados , Fase S/genética , Análisis de Secuencia de ADN/métodos , Daño del ADN , ADN/genética
2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585916

RESUMEN

Long-term perturbation of de novo chromatin assembly during DNA replication has profound effects on epigenome maintenance and cell fate. The early mechanistic origin of these defects is unknown. Here, we combine acute degradation of Chromatin Assembly Factor 1 (CAF-1), a key player in de novo chromatin assembly, with single-cell genomics, quantitative proteomics, and live-microscopy to uncover these initiating mechanisms in human cells. CAF-1 loss immediately slows down DNA replication speed and renders nascent DNA hyperaccessible. A rapid cellular response, distinct from canonical DNA damage signaling, is triggered and lowers histone mRNAs. As a result, histone variants usage and their modifications are altered, limiting transcriptional fidelity and delaying chromatin maturation within a single S-phase. This multi-level response induces a cell-cycle arrest after mitosis. Our work reveals the immediate consequences of defective de novo chromatin assembly during DNA replication, explaining how at later times the epigenome and cell fate can be altered.

3.
Cancer Discov ; 14(7): 1276-1301, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533987

RESUMEN

Cancer homeostasis depends on a balance between activated oncogenic pathways driving tumorigenesis and engagement of stress response programs that counteract the inherent toxicity of such aberrant signaling. Although inhibition of oncogenic signaling pathways has been explored extensively, there is increasing evidence that overactivation of the same pathways can also disrupt cancer homeostasis and cause lethality. We show here that inhibition of protein phosphatase 2A (PP2A) hyperactivates multiple oncogenic pathways and engages stress responses in colon cancer cells. Genetic and compound screens identify combined inhibition of PP2A and WEE1 as synergistic in multiple cancer models by collapsing DNA replication and triggering premature mitosis followed by cell death. This combination also suppressed the growth of patient-derived tumors in vivo. Remarkably, acquired resistance to this drug combination suppressed the ability of colon cancer cells to form tumors in vivo. Our data suggest that paradoxical activation of oncogenic signaling can result in tumor-suppressive resistance. Significance: A therapy consisting of deliberate hyperactivation of oncogenic signaling combined with perturbation of the stress responses that result from this is very effective in animal models of colon cancer. Resistance to this therapy is associated with loss of oncogenic signaling and reduced oncogenic capacity, indicative of tumor-suppressive drug resistance.


Asunto(s)
Neoplasias del Colon , Proteína Fosfatasa 2 , Transducción de Señal , Humanos , Animales , Proteína Fosfatasa 2/metabolismo , Ratones , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Resistencia a Antineoplásicos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Replicación del ADN
4.
Nat Commun ; 14(1): 7762, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040699

RESUMEN

Malignant rhabdoid tumor (MRT) is a highly malignant and often lethal childhood cancer. MRTs are genetically defined by bi-allelic inactivating mutations in SMARCB1, a member of the BRG1/BRM-associated factors (BAF) chromatin remodeling complex. Mutations in BAF complex members are common in human cancer, yet their contribution to tumorigenesis remains in many cases poorly understood. Here, we study derailed regulatory landscapes as a consequence of SMARCB1 loss in the context of MRT. Our multi-omics approach on patient-derived MRT organoids reveals a dramatic reshaping of the regulatory landscape upon SMARCB1 reconstitution. Chromosome conformation capture experiments subsequently reveal patient-specific looping of distal enhancer regions with the promoter of the MYC oncogene. This intertumoral heterogeneity in MYC enhancer utilization is also present in patient MRT tissues as shown by combined single-cell RNA-seq and ATAC-seq. We show that loss of SMARCB1 activates patient-specific epigenetic reprogramming underlying MRT tumorigenesis.


Asunto(s)
Tumor Rabdoide , Humanos , Niño , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Factores de Transcripción/genética , Mutación , Regiones Promotoras Genéticas/genética , Carcinogénesis/genética
5.
Nat Biotechnol ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37709912

RESUMEN

Integrated in vitro models of human organogenesis are needed to elucidate the multi-systemic events underlying development and disease. Here we report the generation of human trunk-like structures that model the co-morphogenesis, patterning and differentiation of the human spine and spinal cord. We identified differentiation conditions for human pluripotent stem cells favoring the formation of an embryo-like extending antero-posterior (AP) axis. Single-cell and spatial transcriptomics show that somitic and spinal cord differentiation trajectories organize along this axis and can self-assemble into a neural tube surrounded by somites upon extracellular matrix addition. Morphogenesis is coupled with AP patterning mechanisms, which results, at later stages of organogenesis, in in vivo-like arrays of neural subtypes along a neural tube surrounded by spine and muscle progenitors contacted by neuronal projections. This integrated system of trunk development indicates that in vivo-like multi-tissue co-morphogenesis and topographic organization of terminal cell types can be achieved in human organoids, opening windows for the development of more complex models of organogenesis.

6.
EMBO J ; 42(17): e113280, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37522872

RESUMEN

Embryo implantation into the uterus marks a key transition in mammalian development. In mice, implantation is mediated by the trophoblast and is accompanied by a morphological transition from the blastocyst to the egg cylinder. However, the roles of trophoblast-uterine interactions in embryo morphogenesis during implantation are poorly understood due to inaccessibility in utero and the remaining challenges to recapitulate it ex vivo from the blastocyst. Here, we engineer a uterus-like microenvironment to recapitulate peri-implantation development of the whole mouse embryo ex vivo and reveal essential roles of the physical embryo-uterine interaction. We demonstrate that adhesion between the trophoblast and the uterine matrix is required for in utero-like transition of the blastocyst to the egg cylinder. Modeling the implanting embryo as a wetting droplet links embryo shape dynamics to the underlying changes in trophoblast adhesion and suggests that the adhesion-mediated tension release facilitates egg cylinder formation. Light-sheet live imaging and the experimental control of the engineered uterine geometry and trophoblast velocity uncovers the coordination between trophoblast motility and embryo growth, where the trophoblast delineates space for embryo morphogenesis.


Asunto(s)
Blastocisto , Implantación del Embrión , Femenino , Ratones , Animales , Trofoblastos , Útero , Desarrollo Embrionario , Mamíferos
7.
Dev Cell ; 58(12): 1037-1051.e4, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37119815

RESUMEN

The hematopoietic niche is a supportive microenvironment composed of distinct cell types, including specialized vascular endothelial cells that directly interact with hematopoietic stem and progenitor cells (HSPCs). The molecular factors that specify niche endothelial cells and orchestrate HSPC homeostasis remain largely unknown. Using multi-dimensional gene expression and chromatin accessibility analyses in zebrafish, we define a conserved gene expression signature and cis-regulatory landscape that are unique to sinusoidal endothelial cells in the HSPC niche. Using enhancer mutagenesis and transcription factor overexpression, we elucidate a transcriptional code that involves members of the Ets, Sox, and nuclear hormone receptor families and is sufficient to induce ectopic niche endothelial cells that associate with mesenchymal stromal cells and support the recruitment, maintenance, and division of HSPCs in vivo. These studies set forth an approach for generating synthetic HSPC niches, in vitro or in vivo, and for effective therapies to modulate the endogenous niche.


Asunto(s)
Nicho de Células Madre , Factores de Transcripción , Animales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Endoteliales/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Regulación de la Expresión Génica
8.
Nat Biotechnol ; 41(6): 813-823, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36593403

RESUMEN

Regulation of chromatin states involves the dynamic interplay between different histone modifications to control gene expression. Recent advances have enabled mapping of histone marks in single cells, but most methods are constrained to profile only one histone mark per cell. Here, we present an integrated experimental and computational framework, scChIX-seq (single-cell chromatin immunocleavage and unmixing sequencing), to map several histone marks in single cells. scChIX-seq multiplexes two histone marks together in single cells, then computationally deconvolves the signal using training data from respective histone mark profiles. This framework learns the cell-type-specific correlation structure between histone marks, and therefore does not require a priori assumptions of their genomic distributions. Using scChIX-seq, we demonstrate multimodal analysis of histone marks in single cells across a range of mark combinations. Modeling dynamics of in vitro macrophage differentiation enables integrated analysis of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation of the interplay between histone modifications in single cells.


Asunto(s)
Código de Histonas , Histonas , Código de Histonas/genética , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Procesamiento Proteico-Postraduccional/genética , Genoma
9.
Nat Genet ; 55(2): 333-345, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539617

RESUMEN

Post-translational histone modifications modulate chromatin activity to affect gene expression. How chromatin states underlie lineage choice in single cells is relatively unexplored. We develop sort-assisted single-cell chromatin immunocleavage (sortChIC) and map active (H3K4me1 and H3K4me3) and repressive (H3K27me3 and H3K9me3) histone modifications in the mouse bone marrow. During differentiation, hematopoietic stem and progenitor cells (HSPCs) acquire active chromatin states mediated by cell-type-specifying transcription factors, which are unique for each lineage. By contrast, most alterations in repressive marks during differentiation occur independent of the final cell type. Chromatin trajectory analysis shows that lineage choice at the chromatin level occurs at the progenitor stage. Joint profiling of H3K4me1 and H3K9me3 demonstrates that cell types within the myeloid lineage have distinct active chromatin but share similar myeloid-specific heterochromatin states. This implies a hierarchical regulation of chromatin during hematopoiesis: heterochromatin dynamics distinguish differentiation trajectories and lineages, while euchromatin dynamics reflect cell types within lineages.


Asunto(s)
Cromatina , Heterocromatina , Ratones , Animales , Cromatina/genética , Heterocromatina/genética , Linaje de la Célula/genética , Epigénesis Genética , Hematopoyesis/genética , Diferenciación Celular/genética
10.
Cardiovasc Res ; 119(2): 477-491, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35576477

RESUMEN

AIMS: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that is characterized by progressive loss of myocardium that is replaced by fibro-fatty cells, arrhythmias, and sudden cardiac death. While myocardial degeneration and fibro-fatty replacement occur in specific locations, the underlying molecular changes remain poorly characterized. Here, we aim to delineate local changes in gene expression to identify new genes and pathways that are relevant for specific remodelling processes occurring during ACM. METHODS AND RESULTS: Using Tomo-Seq, genome-wide transcriptional profiling with high spatial resolution, we created transmural epicardial-to-endocardial gene expression atlases of explanted ACM hearts to gain molecular insights into disease-driving processes. This enabled us to link gene expression profiles to the different regional remodelling responses and allowed us to identify genes that are potentially relevant for disease progression. In doing so, we identified distinct gene expression profiles marking regions of cardiomyocyte degeneration and fibro-fatty remodelling and revealed Zinc finger and BTB domain-containing protein 11 (ZBTB11) to be specifically enriched at sites of active fibro-fatty replacement of myocardium. Immunohistochemistry indicated ZBTB11 to be induced in cardiomyocytes flanking fibro-fatty areas, which could be confirmed in multiple cardiomyopathy patients. Forced overexpression of ZBTB11 induced autophagy and cell death-related gene programmes in human cardiomyocytes, leading to increased apoptosis. CONCLUSION: Our study shows the power of Tomo-Seq to unveil new molecular mechanisms in human cardiomyopathy and uncovers ZBTB11 as a novel driver of cardiomyocyte loss.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Humanos , Arritmias Cardíacas/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transcriptoma
11.
Cell Stem Cell ; 29(7): 1102-1118.e8, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803228

RESUMEN

The embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage. When exposed to suboptimal inducers, these stem cells fluctuate to form interconvertible subpopulations with reduced self-renewal and facilitated differentiation, resembling peri-implantation cells, known as TR stem cells (TSCs). TESCs have enhanced capacity to form blastoids that implant more efficiently in utero due to inducers maintaining not only local TR proliferation and self-renewal, but also WNT6/7B secretion that stimulates uterine decidualization. Overall, the epiblast maintains sustained growth and decidualization potential of abutting TR cells, while, as known, distancing imposed by the blastocyst cavity differentiates TR cells for uterus adhesion, thus patterning the essential functions of implantation.


Asunto(s)
Implantación del Embrión , Placenta , Animales , Blastocisto , Femenino , Estratos Germinativos , Ratones , Embarazo , Células Madre , Trofoblastos/metabolismo
12.
Cell Rep Methods ; 2(6): 100235, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35784648

RESUMEN

Stress granules are phase-separated assemblies formed around RNAs. So far, the techniques available to identify these RNAs are not suitable for single cells and small tissues displaying cell heterogeneity. Here, we used TRIBE (target of RNA-binding proteins identified by editing) to profile stress granule RNAs. We used an RNA-binding protein (FMR1) fused to the catalytic domain of an RNA-editing enzyme (ADAR), which coalesces into stress granules upon oxidative stress. RNAs colocalized with this fusion are edited, producing mutations that are detectable by VASA sequencing. Using single-molecule FISH, we validated that this purification-free method can reliably identify stress granule RNAs in bulk and single S2 cells and in Drosophila neurons. Similar to mammalian cells, we find that stress granule mRNAs encode ATP binding, cell cycle, and transcription factors. This method opens the possibility to identify stress granule RNAs and other RNA-based assemblies in other single cells and tissues.


Asunto(s)
Proteínas de Drosophila , ARN , Animales , ARN/genética , Gránulos de Estrés , Transcriptoma/genética , Proteínas de Unión al ARN/genética , ARN Mensajero/genética , Drosophila/genética , Mamíferos/genética , Proteínas de Drosophila/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
13.
Nat Biotechnol ; 40(12): 1780-1793, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35760914

RESUMEN

Most methods for single-cell transcriptome sequencing amplify the termini of polyadenylated transcripts, capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts and hinders alternative splicing analysis. We, therefore, developed VASA-seq to detect the total transcriptome in single cells, which is enabled by fragmenting and tailing all RNA molecules subsequent to cell lysis. The method is compatible with both plate-based formats and droplet microfluidics. We applied VASA-seq to more than 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. Analyzing the dynamics of the total single-cell transcriptome, we discovered cell type markers, many based on non-coding RNA, and performed in vivo cell cycle analysis via detection of non-polyadenylated histone genes. RNA velocity characterization was improved, accurately retracing blood maturation trajectories. Moreover, our VASA-seq data provide a comprehensive analysis of alternative splicing during mammalian development, which highlighted substantial rearrangements during blood development and heart morphogenesis.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma , Ratones , Animales , Análisis de Secuencia de ARN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Empalme Alternativo/genética , ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Mamíferos/genética
14.
Cell Rep ; 38(9): 110438, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235783

RESUMEN

Intestinal epithelial cells derive from stem cells at the crypt base and travel along the crypt-villus axis to die at the villus tip. The two dominant villus epithelial cell types, absorptive enterocytes and mucous-secreting goblet cells, are mature when they exit crypts. Murine enterocytes switch functional cell states during migration along the villus. Here, we ask whether this zonation is driven by the bone morphogenetic protein (BMP) gradient, which increases toward the villus. Using human intestinal organoids, we show that BMP signaling controls the expression of zonated genes in enterocytes. We find that goblet cells display similar zonation involving antimicrobial genes. Using an inducible Bmpr1a knockout mouse model, we confirm that BMP controls these zonated genes in vivo. Our findings imply that local manipulation of BMP signal strength may be used to reset the enterocyte "rheostat" of carbohydrate versus lipid uptake and to control the antimicrobial response through goblet cells.


Asunto(s)
Enterocitos , Células Caliciformes , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Ratones
15.
Clin Cancer Res ; 28(5): 960-971, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965952

RESUMEN

PURPOSE: Extensive work in preclinical models has shown that microenvironmental cells influence many aspects of cancer cell behavior, including metastatic potential and their sensitivity to therapeutics. In the human setting, this behavior is mainly correlated with the presence of immune cells. Here, in addition to T cells, B cells, macrophages, and mast cells, we identified the relevance of nonimmune cell types for breast cancer survival and therapy benefit, including fibroblasts, myoepithelial cells, muscle cells, endothelial cells, and seven distinct epithelial cell types. EXPERIMENTAL DESIGN: Using single-cell sequencing data, we generated reference profiles for all these cell types. We used these reference profiles in deconvolution algorithms to optimally detangle the cellular composition of more than 3,500 primary breast tumors of patients that were enrolled in the SCAN-B and MATADOR clinical trials, and for which bulk mRNA sequencing data were available. RESULTS: This large data set enables us to identify and subsequently validate the cellular composition of microenvironments that distinguish differential survival and treatment benefit for different treatment regimens in patients with primary breast cancer. In addition to immune cells, we have identified that survival and therapy benefit are characterized by various contributions of distinct epithelial cell types. CONCLUSIONS: From our study, we conclude that differential survival and therapy benefit of patients with breast cancer are characterized by distinct microenvironments that include specific populations of immune and epithelial cells.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Microambiente Celular , Células Endoteliales/patología , Femenino , Humanos , Microambiente Tumoral/genética
16.
Cell Genom ; 2(2): 100096, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36778661

RESUMEN

Organoid evolution models complemented with integrated single-cell sequencing technology provide a powerful platform to characterize intra-tumor heterogeneity (ITH) and tumor evolution. Here, we conduct a parallel evolution experiment to mimic the tumor evolution process by evolving a colon cancer organoid model over 100 generations, spanning 6 months in time. We use single-cell whole-genome sequencing (WGS) in combination with viral lineage tracing at 12 time points to simultaneously monitor clone size, CNV states, SNV states, and viral lineage barcodes for 1,641 single cells. We integrate these measurements to construct clonal evolution trees with high resolution. We characterize the order of events in which chromosomal aberrations occur and identify aberrations that recur multiple times within the same tumor sub-population. We observe recurrent sequential loss of chromosome 4 after loss of chromosome 18 in four unique tumor clones. SNVs and CNVs identified in our organoid experiments are also frequently reported in colorectal carcinoma samples, and out of 334 patients with chromosome 18 loss in a Memorial Sloan Kettering colorectal cancer cohort, 99 (29.6%) also harbor chromosome 4 loss. Our study reconstructs tumor evolution in a colon cancer organoid model at high resolution, demonstrating an approach to identify potentially clinically relevant genomic aberrations in tumor evolution.

17.
Cells ; 10(12)2021 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-34944092

RESUMEN

The maintenance of pancreatic islet architecture is crucial for proper ß-cell function. We previously reported that disruption of human islet integrity could result in altered ß-cell identity. Here we combine ß-cell lineage tracing and single-cell transcriptomics to investigate the mechanisms underlying this process in primary human islet cells. Using drug-induced ER stress and cytoskeleton modification models, we demonstrate that altering the islet structure triggers an unfolding protein response that causes the downregulation of ß-cell maturity genes. Collectively, our findings illustrate the close relationship between endoplasmic reticulum homeostasis and ß-cell phenotype, and strengthen the concept of altered ß-cell identity as a mechanism underlying the loss of functional ß-cell mass.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Células Secretoras de Insulina/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética , Citoesqueleto de Actina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Humanos , Modelos Biológicos , RNA-Seq
18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795059

RESUMEN

Barrett's esophagus (BE) is categorized, based on morphological appearance, into different stages, which correlate with the risk of developing esophageal adenocarcinoma. More advanced stages are more likely to acquire chromosomal instabilities, but stage-specific markers remain elusive. Here, we performed single-cell DNA-sequencing experiments (scDNAseq) with fresh BE biopsies. Dysplastic BE cells frequently contained chromosomal instability (CIN) regions, and these CIN cells carried mutations corresponding to the COSMIC mutational signature SBS17, which were not present in biopsy-matched chromosomally stable (CS) cells or patient-matched nondiseased control cells. CS cells were predominantly found in nondysplastic BE biopsies. The single-base substitution (SBS) signatures of all CS BE cells analyzed were indistinguishable from those of nondiseased esophageal or gastric cells. Single-cell RNA-sequencing (scRNAseq) experiments with BE biopsies identified two sets of marker genes which facilitate the distinction between columnar BE epithelium and nondysplastic/dysplastic stages. Moreover, histological validation confirmed a correlation between increased CLDN2 expression and the presence of dysplastic BE stages. Our scDNAseq and scRNAseq datasets, which are a useful resource for the community, provide insight into the mutational landscape and gene expression pattern at different stages of BE development.


Asunto(s)
Esófago de Barrett/genética , Esófago de Barrett/patología , Análisis de la Célula Individual/métodos , Adenocarcinoma/genética , Esófago de Barrett/diagnóstico , Biomarcadores , Biopsia , Inestabilidad Cromosómica , Epitelio , Esófago , Expresión Génica , Humanos , Hiperplasia/patología , Mutación , Análisis de Secuencia de ADN , Secuenciación del Exoma
19.
Nat Cell Biol ; 23(11): 1163-1175, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34737442

RESUMEN

The developmental role of histone H3K9 methylation (H3K9me), which typifies heterochromatin, remains unclear. In Caenorhabditis elegans, loss of H3K9me leads to a highly divergent upregulation of genes with tissue and developmental-stage specificity. During development H3K9me is lost from differentiated cell type-specific genes and gained at genes expressed in earlier developmental stages or other tissues. The continuous deposition of H3K9me2 by the SETDB1 homolog MET-2 after terminal differentiation is necessary to maintain repression. In differentiated tissues, H3K9me ensures silencing by restricting the activity of a defined set of transcription factors at promoters and enhancers. Increased chromatin accessibility following the loss of H3K9me is neither sufficient nor necessary to drive transcription. Increased ATAC-seq signal and gene expression correlate at a subset of loci positioned away from the nuclear envelope, while derepressed genes at the nuclear periphery remain poorly accessible despite being transcribed. In conclusion, H3K9me deposition can confer tissue-specific gene expression and maintain the integrity of terminally differentiated muscle by restricting transcription factor activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Diferenciación Celular , Ensamble y Desensamble de Cromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Transcripción Genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Secuenciación de Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Metilación , Unión Proteica , Factores de Tiempo , Transcriptoma
20.
Nature ; 597(7877): 561-565, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497418

RESUMEN

Single-cell sequencing methods have enabled in-depth analysis of the diversity of cell types and cell states in a wide range of organisms. These tools focus predominantly on sequencing the genomes1, epigenomes2 and transcriptomes3 of single cells. However, despite recent progress in detecting proteins by mass spectrometry with single-cell resolution4, it remains a major challenge to measure translation in individual cells. Here, building on existing protocols5-7, we have substantially increased the sensitivity of these assays to enable ribosome profiling in single cells. Integrated with a machine learning approach, this technology achieves single-codon resolution. We validate this method by demonstrating that limitation for a particular amino acid causes ribosome pausing at a subset of the codons encoding the amino acid. Of note, this pausing is only observed in a sub-population of cells correlating to its cell cycle state. We further expand on this phenomenon in non-limiting conditions and detect pronounced GAA pausing during mitosis. Finally, we demonstrate the applicability of this technique to rare primary enteroendocrine cells. This technology provides a first step towards determining the contribution of the translational process to the remarkable diversity between seemingly identical cells.


Asunto(s)
Ciclo Celular/genética , Codón/genética , Biosíntesis de Proteínas , RNA-Seq/métodos , Ribosomas/metabolismo , Análisis de la Célula Individual , Aminoácidos/deficiencia , Aminoácidos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Línea Celular , Femenino , Humanos , Aprendizaje Automático , Masculino , Ratones , Extensión de la Cadena Peptídica de Translación , Iniciación de la Cadena Peptídica Traduccional , Terminación de la Cadena Péptídica Traduccional , Biosíntesis de Proteínas/efectos de los fármacos , Reproducibilidad de los Resultados , Ribosomas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA