RESUMEN
BACKGROUND AND OBJECTIVE: Patients who underwent Roux-en-Y Gastric Bypass surgery for treatment of obesity or diabetes can suffer from post-bariatric hypoglycemia (PBH). It has been assumed that PBH is caused by increased levels of the hormone GLP-1. In this research, we elucidate the role of GLP-1 in PBH with a physiology-based mathematical model. METHODS: The Eindhoven Diabetes Simulator (EDES) model, simulating postprandial glucose homeostasis, was adapted to include the effect of GLP-1 on insulin secretion. Parameter sensitivity analysis was used to identify parameters that could cause PBH. Virtual patient models were created by defining sets of models parameters based on 63 participants from the HypoBaria study cohort, before and one year after bariatric surgery. RESULTS: Simulations with the virtual patient models showed that glycemic excursions can be correctly simulated for the study population, despite heterogeneity in the glucose, insulin and GLP-1 data. Sensitivity analysis showed that GLP-1 stimulated insulin secretion alone was not able to cause PBH. Instead, analyses showed the increased transit speed of the ingested food resulted in quick and increased glucose absorption in the gut after surgery, which in turn induced postprandial glycemic dips. Furthermore, according to the model post-bariatric increased rate of glucose absorption in combination with different levels of insulin sensitivity can result in PBH. CONCLUSIONS: Our model findings implicate that if initial rapid improvement in insulin sensitivity after gastric bypass surgery is followed by a more gradual decrease in insulin sensitivity, this may result in the emergence of PBH after prolonged time (months to years after surgery).
RESUMEN
The global rise in diabetes prevalence poses a significant challenge to healthcare providers, stimulating interest in digital interventions such as educational games. However, the impact and availability of research-developed diabetes games remain uncertain. This scoping review aimed to provide a comprehensive overview of serious games for diabetes, encompassing their availability, characteristics and health effects. Through an electronic search in multiple databases, a total of 21 articles addressing 23 games were included in the literature review. The majority of these games were inaccessible outside of research settings, despite demonstrating positive effects on various aspects of diabetes management, including knowledge, physical activity, self-management, mental well-being, and HbA1c levels. Most games were designed for mobile phones, targeting both children and adults. A subsequent app store search revealed 13 additional diabetes games, however nearly none (7.7%) of these underwent research scrutiny, leaving their expected effects uncertain. The disparity between evidence-based games and those available in app stores underscores the need for bridging this gap to ensure the availability of effective digital games for diabetes management worldwide.
Asunto(s)
Diabetes Mellitus , Personal de Salud , Juegos de Video , Humanos , Diabetes Mellitus/terapia , Ejercicio Físico , Aplicaciones Móviles , Automanejo/métodos , Educación del Paciente como Asunto/métodosRESUMEN
Cell-free systems have emerged as a versatile platform in synthetic biology, finding applications in various areas such as prototyping synthetic circuits, biosensor development, and biomanufacturing. To streamline the prototyping process, cell-free systems often incorporate a modeling step that predicts the outcomes of various experimental scenarios, providing a deeper insight into the underlying mechanisms and functions. There are two recognized approaches for modeling these systems: mechanism-based modeling, which models the underlying reaction mechanisms; and data-driven modeling, which makes predictions based on data without preconceived interactions between system components. In this highlight, we focus on the latest advancements in both modeling approaches for cell-free systems, exploring their potential for the design and optimization of synthetic genetic circuits.
Asunto(s)
Sistema Libre de Células , Biología Sintética , Biología Sintética/métodos , Redes Reguladoras de Genes , Modelos BiológicosRESUMEN
Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.
Asunto(s)
Glucosa , Insulina , Humanos , Glucemia/metabolismo , Automonitorización de la Glucosa Sanguínea , Monitoreo Continuo de GlucosaRESUMEN
The manifestation of metabolic deteriorations that accompany overweight and obesity can differ greatly between individuals, giving rise to a highly heterogeneous population. This inter-individual variation can impede both the provision and assessment of nutritional interventions as multiple aspects of metabolic health should be considered at once. Here, we apply the Mixed Meal Model, a physiology-based computational model, to characterize an individual's metabolic health in silico. A population of 342 personalized models were generated using data for individuals with overweight and obesity from three independent intervention studies, demonstrating a strong relationship between the model-derived metric of insulin resistance (ρ = 0.67, p < 0.05) and the gold-standard hyperinsulinemic-euglycemic clamp. The model is also shown to quantify liver fat accumulation and ß-cell functionality. Moreover, we show that personalized Mixed Meal Models can be used to evaluate the impact of a dietary intervention on multiple aspects of metabolic health at the individual level.
RESUMEN
PURPOSE: This study aimed to describe the 24-hour cycle of wearable sensor-obtained heart rate in patients with deterioration-free recovery and to compare it with patients experiencing postoperative deterioration. METHODS: A prospective observational trial was performed in patients following bariatric or major abdominal cancer surgery. A wireless accelerometer patch (Healthdot) continuously measured postoperative heart rate, both in the hospital and after discharge, for a period of 14 days. The circadian pattern, or diurnal rhythm, in the wearable sensor-obtained heart rate was described using peak, nadir and peak-nadir excursions. RESULTS: The study population consisted of 137 bariatric and 100 major abdominal cancer surgery patients. In the latter group, 39 experienced postoperative deterioration. Both surgery types showed disrupted diurnal rhythm on the first postoperative days. Thereafter, the bariatric group had significantly lower peak heart rates (days 4, 7-12, 14), lower nadir heart rates (days 3-14) and larger peak-nadir excursions (days 2, 4-14). In cancer surgery patients, significantly higher nadir (days 2-5) and peak heart rates (days 2-3) were observed prior to deterioration. CONCLUSIONS: The postoperative diurnal rhythm of heart rate is disturbed by different types of surgery. Both groups showed recovery of diurnal rhythm but in patients following cancer surgery, both peak and nadir heart rates were higher than in the bariatric surgery group. Especially nadir heart rate was identified as a potential prognostic marker for deterioration after cancer surgery.
Asunto(s)
Neoplasias , Dispositivos Electrónicos Vestibles , Humanos , Frecuencia Cardíaca/fisiología , Ritmo Circadiano/fisiología , Estudios ProspectivosRESUMEN
Obesity is a major risk factor for the development of type 2 diabetes (T2D), where a sustained weight loss may result in T2D remission in individuals with obesity. To design effective and feasible intervention strategies to prevent or reverse T2D, it is imperative to study the progression of T2D and remission together. Unfortunately, this is not possible through experimental and observational studies. To address this issue, we introduce a data-driven computational model and use human data to investigate the progression of T2D with obesity and remission through weight loss on the same timeline. We identify thresholds for the emergence of T2D and necessary conditions for remission. We explain why remission is only possible within a window of opportunity and the way that window depends on the progression history of T2D, individual's metabolic state, and calorie restrictions. These findings can help to optimize therapeutic intervention strategies for T2D prevention or treatment.
RESUMEN
The liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug. However, relating the results of animal and in vitro studies to relevant clinical outcomes for the human in vivo situation still proves challenging. In this study, we incorporate principles of transfer learning within a deep artificial neural network allowing us to leverage the relative abundance of rat in vitro and in vivo exposure data from the Open TG-GATEs data set to train a model to predict the expected pattern of human in vivo gene expression following an exposure given measured human in vitro gene expression. We show that domain adaptation has been successfully achieved, with the rat and human in vitro data no longer being separable in the common latent space generated by the network. The network produces physiologically plausible predictions of human in vivo gene expression pattern following an exposure to a previously unseen compound. Moreover, we show the integration of the human in vitro data in the training of the domain adaptation network significantly improves the temporal accuracy of the predicted rat in vivo gene expression pattern following an exposure to a previously unseen compound. In this way, we demonstrate the improvements in prediction accuracy that can be achieved by combining data from distinct domains.
Asunto(s)
Hígado , Redes Neurales de la Computación , Humanos , Ratas , Animales , Aprendizaje , Aprendizaje Automático , Expresión GénicaRESUMEN
Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from "bottom-up" mechanistic models to "top-down" data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals' glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R2 and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests.
Asunto(s)
Glucemia , Glucosa , Humanos , Estudios Prospectivos , Estudios Transversales , InsulinaRESUMEN
Assessing post-operative recovery is a significant component of perioperative care, since this assessment might facilitate detecting complications and determining an appropriate discharge date. However, recovery is difficult to assess and challenging to predict, as no universally accepted definition exists. Current solutions often contain a high level of subjectivity, measure recovery only at one moment in time, and only investigate recovery until the discharge moment. For these reasons, this research aims to create a model that predicts continuous recovery scores in perioperative care in the hospital and at home for objective decision making. This regression model utilized vital signs and activity metrics measured using wearable sensors and the XGBoost algorithm for training. The proposed model described continuous recovery profiles, obtained a high predictive performance, and provided outcomes that are interpretable due to the low number of features in the final model. Moreover, activity features, the circadian rhythm of the heart, and heart rate recovery showed the highest feature importance in the recovery model. Patients could be identified with fast and slow recovery trajectories by comparing patient-specific predicted profiles to the average fast- and slow-recovering populations. This identification may facilitate determining appropriate discharge dates, detecting complications, preventing readmission, and planning physical therapy. Hence, the model can provide an automatic and objective decision support tool.
Asunto(s)
Neoplasias , Dispositivos Electrónicos Vestibles , Humanos , Algoritmos , Atención Perioperativa , Aprendizaje AutomáticoRESUMEN
Microbial cell factories face changing environments during industrial fermentations. Kinetic metabolic models enable the simulation of the dynamic metabolic response to these perturbations, but their development is challenging due to model complexity and experimental data requirements. An example of this is the well-established microbial cell factory Saccharomyces cerevisiae, for which no consensus kinetic model of central metabolism has been developed and implemented in industry. Here, we aim to bring the academic and industrial communities closer to this consensus model. We developed a physiology informed kinetic model of yeast glycolysis connected to central carbon metabolism by including the effect of anabolic reactions precursors, mitochondria and the trehalose cycle. To parametrize such a large model, a parameter estimation pipeline was developed, consisting of a divide and conquer approach, supplemented with regularization and global optimization. Additionally, we show how this first mechanistic description of a growing yeast cell captures experimental dynamics at different growth rates and under a strong glucose perturbation, is robust to parametric uncertainty and explains the contribution of the different pathways in the network. Such a comprehensive model could not have been developed without using steady state and glucose perturbation data sets. The resulting metabolic reconstruction and parameter estimation pipeline can be applied in the future to study other industrially-relevant scenarios. We show this by generating a hybrid CFD-metabolic model to explore intracellular glycolytic dynamics for the first time. The model suggests that all intracellular metabolites oscillate within a physiological range, except carbon storage metabolism, which is sensitive to the extracellular environment.
Asunto(s)
Glucosa , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Glucosa/metabolismo , Glucólisis , Fermentación , Carbono/metabolismo , Modelos BiológicosRESUMEN
Current computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production. This model was applied to postprandial glucose and insulin time-series data following different AA challenges (with and without co-ingestion of glucose), dried milk protein ingredients, and dairy products. Our findings demonstrate that this model allows accurate description of postprandial glucose and insulin dynamics and provides insight into the physiological processes underlying meal responses. This model may facilitate the development of computational models that describe glucose homeostasis following the intake of multiple macronutrients, while capturing relevant features of an individual's metabolic health.
RESUMEN
BACKGROUND: Postoperative deterioration is often preceded by abnormal vital parameters. Therefore, vital parameters of postoperative patients are routinely measured by nursing staff. Wrist-worn sensors could potentially provide an alternative tool for the measurement of vital parameters in low-acuity settings. These devices would allow more frequent or even continuous measurements of vital parameters without relying on time-consuming manual measurements, provided their accuracy in this clinical population is established. OBJECTIVE: This study aimed to assess the accuracy of heart rate (HR) and respiratory rate (RR) measures obtained via a wearable photoplethysmography (PPG) wristband in a cohort of postoperative patients. METHODS: The accuracy of the wrist-worn PPG sensor was assessed in 62 post-abdominal surgery patients (mean age 55, SD 15 years; median BMI 34, IQR 25-40 kg/m2). The wearable obtained HR and RR measurements were compared to those of the reference monitor in the postanesthesia or intensive care unit. Bland-Altman and Clarke error grid analyses were performed to determine agreement and clinical accuracy. RESULTS: Data were collected for a median of 1.2 hours per patient. With a coverage of 94% for HR and 34% for RR, the device was able to provide accurate measurements for the large majority of the measurements as 98% and 93% of the measurements were within 5 bpm or 3 rpm of the reference signal. Additionally, 100% of the HR and 98% of the RR measurements were clinically acceptable on Clarke error grid analysis. CONCLUSIONS: The wrist-worn PPG device is able to provide measurements of HR and RR that can be seen as sufficiently accurate for clinical applications. Considering the coverage, the device was able to continuously monitor HR and report RR when measurements of sufficient quality were obtained. TRIAL REGISTRATION: ClinicalTrials.gov NCT03923127; https://www.clinicaltrials.gov/ct2/show/NCT03923127.
RESUMEN
Microbial metabolism is strongly dependent on the environmental conditions. While these can be well controlled under laboratory conditions, large-scale bioreactors are characterized by inhomogeneities and consequently dynamic conditions for the organisms. How Saccharomyces cerevisiae response to frequent perturbations in industrial bioreactors is still not understood mechanistically. To study the adjustments to prolonged dynamic conditions, we used published repeated substrate perturbation regime experimental data, extended it with proteomic measurements and used both for modelling approaches. Multiple types of data were combined; including quantitative metabolome, 13C enrichment and flux quantification data. Kinetic metabolic modelling was applied to study the relevant intracellular metabolic response dynamics. An existing model of yeast central carbon metabolism was extended, and different subsets of enzymatic kinetic constants were estimated. A novel parameter estimation pipeline based on combinatorial enzyme selection supplemented by regularization was developed to identify and predict the minimum enzyme and parameter adjustments from steady-state to dynamic substrate conditions. This approach predicted proteomic changes in hexose transport and phosphorylation reactions, which were additionally confirmed by proteome measurements. Nevertheless, the modelling also hints at a yet unknown kinetic or regulation phenomenon. Some intracellular fluxes could not be reproduced by mechanistic rate laws, including hexose transport and intracellular trehalase activity during substrate perturbation cycles.
RESUMEN
Background: Heart failure (HF) biomarkers have prognostic value. The aim of this study was to combine HF biomarkers into an objective classification system for risk stratification of patients with HF. Methods: HF biomarkers were analyzed in a population of HF outpatients and expressed relative to their cut-off values (N-terminal pro-B-type natriuretic peptide [NT-proBNP] >1,000 pg/mL, soluble suppression of tumorigenesis-2 [ST2] >35 ng/mL, growth differentiation factor-15 [GDF-15] >2,000 pg/mL, and fibroblast growth factor-23 [FGF-23] >95.4 pg/mL). Biomarkers that remained significant in multivariable analysis were combined to devise the Heartmarker score. The performance of the Heartmarker score was compared to the widely used New York Heart Association (NYHA) classification based on symptoms during ordinary activity. Results: HF biomarkers of 245 patients were analyzed, 45 (18%) of whom experienced the composite endpoint of HF hospitalization, appropriate implantable cardioverter-defibrillator shock, or death. HF biomarkers were elevated more often in patients that reached the composite endpoint than in patients that did not reach the endpoint. NT-proBNP, ST2, and GDF-15 were independent predictors of the composite endpoint and were thus combined as the Heartmarker score. The event-free survival and distance covered in 6 minutes of walking decreased with an increasing Heartmarker score. Compared with the NYHA classification, the Heartmarker score was better at discriminating between different risk classes and had a comparable relationship to functional capacity. Conclusions: The Heartmarker score is a reproducible and intuitive model for risk stratification of outpatients with HF, using routine biomarker measurements.
Asunto(s)
Insuficiencia Cardíaca , Humanos , Biomarcadores , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/química , Insuficiencia Cardíaca/diagnóstico , Proteína 1 Similar al Receptor de Interleucina-1 , Péptido Natriurético Encefálico/sangre , Péptido Natriurético Encefálico/química , Fragmentos de Péptidos , Pronóstico , Factor-23 de Crecimiento de Fibroblastos/sangre , Factor-23 de Crecimiento de Fibroblastos/químicaRESUMEN
INTRODUCTION: The shift toward remote patient monitoring methods to detect clinical deterioration requires testing of wearable devices in real-life clinical settings. This study aimed to develop a remote early warning scoring (REWS) system based on continuous measurements using a wearable device, and compare its diagnostic performance for the detection of deterioration to the diagnostic performance of the conventional modified early warning score (MEWS). MATERIALS AND METHODS: The study population of this prospective, single center trial consisted of patients who underwent major abdominal cancer surgery and were monitored using routine in-hospital spotcheck measurements of the vital parameters. Heart and respiratory rates were measured continuously using a wireless accelerometer patch (HealthDot). The prediction by MEWS of deterioration toward a complication graded Clavien-Dindo of 2 or higher was compared to the REWS derived from continuous measurements by the wearable patch. MAIN RESULTS: A total of 103 patients and 1909 spot-check measurements were included in the analysis. Postoperative deterioration was observed in 29 patients. For both EWS systems, the sensitivity (MEWS: 0.20 95% CI: [0.13-0.29], REWS: 0.20 95% CI: [0.13-0.29]) and specificity (MEWS: 0.96 95% CI: [0.95-0.97], REWS: 0.96 95% CI: [0.95-0.97]) were assessed. CONCLUSIONS: The diagnostic value of the REWS method, based on continuous measurements of the heart and respiratory rates, is comparable to that of the MEWS in patients following major abdominal cancer surgery. The wearable patch could detect the same amount of deteriorations, without requiring manual spot check measurements.
Asunto(s)
Puntuación de Alerta Temprana , Neoplasias , Dispositivos Electrónicos Vestibles , Humanos , Signos Vitales , Estudios Prospectivos , Neoplasias/cirugíaRESUMEN
Within the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.CETP mice, as part of an inbred mouse model in which mice develop the metabolic syndrome upon being fed a high-fat high-cholesterol diet, show large inter-individual variation in the parameters of the metabolic syndrome, despite a lack of genetic and environmental variation. In the present study, we set out to resolve what mechanisms could underlie this variation. We used measurements of glucose and lipid metabolism from a six-month longitudinal study on the development of the metabolic syndrome. Mice were classified as mice with either high plasma triglyceride (responders) or low plasma triglyceride (non-responders) at the baseline. Subsequently, we fitted the data to a dynamic computational model of whole-body glucose and lipid metabolism (MINGLeD) by making use of a hybrid modelling method called Adaptations in Parameter Trajectories (ADAPT). ADAPT integrates longitudinal data, and predicts how the parameters of the model must change through time in order to comply with the data and model constraints. To explain the phenotypic variation in plasma triglycerides, the ADAPT analysis suggested a decreased cholesterol absorption, higher energy expenditure and increased fecal fatty acid excretion in non-responders. While decreased cholesterol absorption and higher energy expenditure could not be confirmed, the experimental validation demonstrated that the non-responders were indeed characterized by increased fecal fatty acid excretion. Furthermore, the amount of fatty acids excreted strongly correlated with bile acid excretion, in particular deoxycholate. Since bile acids play an important role in the solubilization of lipids in the intestine, these results suggest that variation in bile acid homeostasis may in part drive the phenotypic variation in the APOE*3-Leiden.CETP mice.
Asunto(s)
Apolipoproteína E3 , Proteínas de Transferencia de Ésteres de Colesterol , Dieta Alta en Grasa , Síndrome Metabólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Proteínas de Transferencia de Ésteres de Colesterol/genética , Proteínas de Transferencia de Ésteres de Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Estudios Longitudinales , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Fenotipo , Análisis de Sistemas , Triglicéridos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismoRESUMEN
Despite the pivotal role played by elevated circulating triglyceride levels in the pathophysiology of cardio-metabolic diseases many of the indices used to quantify metabolic health focus on deviations in glucose and insulin alone. We present the Mixed Meal Model, a computational model describing the systemic interplay between triglycerides, free fatty acids, glucose, and insulin. We show that the Mixed Meal Model can capture deviations in the post-meal excursions of plasma glucose, insulin, and triglyceride that are indicative of features of metabolic resilience; quantifying insulin resistance and liver fat; validated by comparison to gold-standard measures. We also demonstrate that the Mixed Meal Model is generalizable, applying it to meals with diverse macro-nutrient compositions. In this way, by coupling triglycerides to the glucose-insulin system the Mixed Meal Model provides a more holistic assessment of metabolic resilience from meal response data, quantifying pre-clinical metabolic deteriorations that drive disease development in overweight and obesity.
RESUMEN
OBJECTIVES: Identifying patients with a possible SARS-CoV-2 infection in the emergency department (ED) is challenging. Symptoms differ, incidence rates vary and test capacity may be limited. As PCR-testing all ED patients is neither feasible nor effective in most centres, a rapid, objective, low-cost early warning score to triage ED patients for a possible infection is developed. DESIGN: Case-control study. SETTING: Secondary and tertiary hospitals in the Netherlands. PARTICIPANTS: The study included patients presenting to the ED with venous blood sampling from July 2019 to July 2020 (n=10 417, 279 SARS-CoV-2-positive). The temporal validation cohort covered the period from July 2020 to October 2021 (n=14 080, 1093 SARS-CoV-2-positive). The external validation cohort consisted of patients presenting to the ED of three hospitals in the Netherlands (n=12 061, 652 SARS-CoV-2-positive). PRIMARY OUTCOME MEASURES: The primary outcome was one or more positive SARS-CoV-2 PCR test results within 1 day prior to or 1 week after ED presentation. RESULTS: The resulting 'CoLab-score' consists of 10 routine laboratory measurements and age. The score showed good discriminative ability (AUC: 0.930, 95% CI 0.909 to 0.945). The lowest CoLab-score had high sensitivity for COVID-19 (0.984, 95% CI 0.970 to 0.991; specificity: 0.411, 95% CI 0.285 to 0.520). Conversely, the highest score had high specificity (0.978, 95% CI 0.973 to 0.983; sensitivity: 0.608, 95% CI 0.522 to 0.685). The results were confirmed in temporal and external validation. CONCLUSIONS: The CoLab-score is based on routine laboratory measurements and is available within 1 hour after presentation. Depending on the prevalence, COVID-19 may be safely ruled out in over one-third of ED presentations. Highly suspect cases can be identified regardless of presenting symptoms. The CoLab-score is continuous, in contrast to the binary outcome of lateral flow testing, and can guide PCR testing and triage ED patients.
Asunto(s)
COVID-19 , Puntuación de Alerta Temprana , COVID-19/diagnóstico , COVID-19/epidemiología , Estudios de Casos y Controles , Servicio de Urgencia en Hospital , Humanos , SARS-CoV-2 , Centros de Atención TerciariaRESUMEN
BACKGROUND: The metabolic health index (MHI) is a biomarker-based model that objectively assesses the cumulative impact of comorbidities type 2 diabetes mellitus, hypertension and dyslipidemia on the health state of bariatric patients. The MHI was developed on a single-center cohort using a fully laboratory data-driven approach, resulting in a MHI score on a range from 1 to 6. To show universal applicability in clinical care, the MHI was validated externally and potential laboratory-related shortcomings were evaluated. METHODS: Retrospective laboratory and national bariatric quality registry data were collected from five Dutch renowned bariatric centers (n = 11 501). MHI imprecision was derived from the cumulative effect of biological and analytical variance of the individual input variables of the MHI model. The performance of the MHI (model) was assessed in terms of discrimination and calibration. RESULTS: The cumulative imprecision in MHI was 0.25 MHI points. Calibration of the MHI model diverged over the different centers but was accounted for by misregistration of comorbidity after cross-checking the data. Discriminative performance of the MHI model was consistent across the different centers. CONCLUSIONS: The MHI model can be applied in clinical practice of bariatric centers, regardless of patient mix and analytical platform. Because the MHI is based on objective parameters, it is insensitive to diverging clinical definitions of comorbidities. Therefore, the MHI can be used to objectify severity of metabolic comorbidities in bariatric patients. The MHI can support the patient-selection process for surgery and objectively assessing the effect of surgery on the metabolic health state.