RESUMEN
Currently, over 88 million people are estimated to have adopted a vegan or vegetarian diet. Cysteine is a semi-essential amino acid, which availability is largely dependent on dietary intake of meat, eggs and whole grains. Vegan/vegetarian diets are therefore inherently low in cysteine. Sufficient uptake of cysteine is crucial, as it serves as substrate for protein synthesis and can be converted to taurine and glutathione. We found earlier that intermolecular cystine bridges are essential for the barrier function of the intestinal mucus layer. Therefore, we now investigate the effect of low dietary cystine on the intestine. Mice (8/group) received a high fat diet with a normal or low cystine concentration for 2 weeks. We observed no changes in plasma methionine, cysteine, taurine or glutathione levels or bile acid conjugation after 2 weeks of low cystine feeding. In the colon, dietary cystine restriction results in an increase in goblet cell numbers, and a borderline significant increase mucus layer thickness. Gut microbiome composition and expression of stem cell markers did not change on the low cystine diet. Remarkably, stem cell markers, as well as the proliferation marker Ki67, were increased upon cystine restriction in the small intestine. In line with this, gene set enrichment analysis indicated enrichment of Wnt signaling in the small intestine of mice on the low cystine diet, indicative of increased epithelial proliferation. In conclusion, 2 weeks of cystine restriction did not result in apparent systemic effects, but the low cystine diet increased the proliferative capacity specifically of the small intestine and induced the number of goblet cells in the colon.
Asunto(s)
Cisteína , Cistina , Humanos , Animales , Ratones , Intestino Delgado , Glutatión , TaurinaRESUMEN
BACKGROUND & AIMS: The interorgan crosstalk between the liver and the intestine has been the focus of intense research. Key in this crosstalk are bile acids, which are secreted from the liver into the intestine, interact with the microbiome, and upon absorption reach back to the liver. The bile acid-activated farnesoid X receptor (Fxr) is involved in the gut-to-liver axis. However, liver-to-gut communication and the roles of bile acids and Fxr remain elusive. Herein, we aim to get a better understanding of Fxr-mediated liver-to-gut communication, particularly in colon functioning. METHODS: Fxr floxed/floxed mice were crossed with cre-expressing mice to yield Fxr ablation in the intestine (Fxr-intKO), liver (Fxr-livKO), or total body (Fxr-totKO). The effects on colonic gene expression (RNA sequencing), the microbiome (16S sequencing), and mucus barrier function by ex vivo imaging were analysed. RESULTS: Despite relatively small changes in biliary bile acid concentration and composition, more genes were differentially expressed in the colons of Fxr-livKO mice than in those of Fxr-intKO and Fxr-totKO mice (3272, 731, and 1824, respectively). The colons of Fxr-livKO showed increased expression of antimicrobial genes, Toll-like receptors, inflammasome-related genes and genes belonging to the 'Mucin-type O-glycan biosynthesis' pathway. Fxr-livKO mice have a microbiome profile favourable for the protective capacity of the mucus barrier. The thickness of the inner sterile mucus layer was increased and colitis symptoms reduced in Fxr-livKO mice. CONCLUSIONS: Targeting of FXR is at the forefront in the battle against metabolic diseases. We show that ablation of Fxr in the liver greatly impacts colonic gene expression and increased the colonic mucus barrier. Increasing the mucus barrier is of utmost importance to battle intestinal diseases such as inflammatory bowel disease, and we show that this might be done by antagonising FXR in the liver. LAY SUMMARY: This study shows that the communication of the liver to the intestine is crucial for intestinal health. Bile acids are key players in this liver-to-gut communication, and when Fxr, the master regulator of bile acid homoeostasis, is ablated in the liver, colonic gene expression is largely affected, and the protective capacity of the mucus barrier is increased.
RESUMEN
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.