Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(23): e2213330120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252949

RESUMEN

Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.


Asunto(s)
Aves , Ecosistema , Animales , Aves/fisiología , Biodiversidad , Cambio Climático , Predicción
2.
Glob Chang Biol ; 29(12): 3271-3284, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36924241

RESUMEN

At large scales, the mechanisms underpinning stability in natural communities may vary in importance due to changes in species composition, mean abundance, and species richness. Here we link species characteristics (niche positions) and community characteristics (richness and abundance) to evaluate the importance of stability mechanisms in 156 butterfly communities monitored across three European countries and spanning five bioclimatic regions. We construct niche-based hierarchical structural Bayesian models to explain first differences in abundance, population stability, and species richness between the countries, and then explore how these factors impact community stability both directly and indirectly (via synchrony and population stability). Species richness was partially explained by the position of a site relative to the niches of the species pool, and species near the centre of their niche had higher average population stability. The differences in mean abundance, population stability, and species richness then influenced how much variation in community stability they explained across the countries. We found, using variance partitioning, that community stability in Finnish communities was most influenced by community abundance, whereas this aspect was unimportant in Spain with species synchrony explaining most variation; the UK was somewhat intermediate with both factors explaining variation. Across all countries, the diversity-stability relationship was indirect with species richness reducing synchrony which increased community stability, with no direct effects of species richness. Our results suggest that in natural communities, biogeographical variation observed in key drivers of stability, such as population abundance and species richness, leads to community stability being limited by different factors and that this can partially be explained due to the niche characteristics of the European butterfly assemblage.


Asunto(s)
Mariposas Diurnas , Ecosistema , Animales , Biodiversidad , Teorema de Bayes , Europa (Continente)
3.
Proc Natl Acad Sci U S A ; 119(10): e2105416119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238646

RESUMEN

SignificanceClimate change is impacting wild populations, but its relative importance compared to other causes of change is still unclear. Many studies assume that changes in traits primarily reflect effects of climate change, but this assumption is rarely tested. We show that in European birds global warming was likely the single most important contributor to temporal trends in laying date, body condition, and offspring number. However, nontemperature factors were also important and acted in the same direction, implying that attributing temporal trends solely to rising temperatures overestimates the impact of climate warming. Differences among species in the amount of trait change were predominantly determined by these nontemperature effects, suggesting that species differences are not due to variation in sensitivity to temperature.


Asunto(s)
Aves/fisiología , Calentamiento Global , Animales , Dinámica Poblacional , Especificidad de la Especie
4.
Parasit Vectors ; 13(1): 464, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912330

RESUMEN

BACKGROUND: Arboviruses are a growing public health concern in Europe, with both endemic and exotic arboviruses expected to spread further into novel areas in the next decades. Predicting where future outbreaks will occur is a major challenge, particularly for regions where these arboviruses are not endemic. Spatial modelling of ecological risk factors for arbovirus circulation can help identify areas of potential emergence. Moreover, combining hazard maps of different arboviruses may facilitate a cost-efficient, targeted multiplex-surveillance strategy in areas where virus transmission is most likely. Here, we developed predictive hazard maps for the introduction and/or establishment of six arboviruses that were previously prioritized for the Netherlands: West Nile virus, Japanese encephalitis virus, Rift Valley fever virus, tick-borne encephalitis virus, louping-ill virus and Crimean-Congo haemorrhagic fever virus. METHODS: Our spatial model included ecological risk factors that were identified as relevant for these arboviruses by an earlier systematic review, including abiotic conditions, vector abundance, and host availability. We used geographic information system (GIS)-based tools and geostatistical analyses to model spatially continuous datasets on these risk factors to identify regions in the Netherlands with suitable ecological conditions for arbovirus introduction and establishment. RESULTS: The resulting hazard maps show that there is spatial clustering of areas with either a relatively low or relatively high environmental suitability for arbovirus circulation. Moreover, there was some overlap in high-hazard areas for virus introduction and/or establishment, particularly in the southern part of the country. CONCLUSIONS: The similarities in environmental suitability for some of the arboviruses provide opportunities for targeted sampling of vectors and/or sentinel hosts in these potential hotspots of emergence, thereby increasing the efficient use of limited resources for surveillance.


Asunto(s)
Infecciones por Arbovirus/virología , Arbovirus/aislamiento & purificación , Especies Introducidas/estadística & datos numéricos , Infecciones por Arbovirus/epidemiología , Arbovirus/clasificación , Arbovirus/genética , Arbovirus/fisiología , Humanos , Países Bajos/epidemiología , Análisis Espacio-Temporal
5.
Science ; 352(6281): 84-7, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27034371

RESUMEN

Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.


Asunto(s)
Aves , Cambio Climático , Migración Animal , Animales , Biodiversidad , Cruzamiento , Seguimiento de Parámetros Ecológicos , Europa (Continente) , Dinámica Poblacional , Estados Unidos
6.
Nature ; 511(7509): 341-3, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25030173

RESUMEN

Recent studies have shown that neonicotinoid insecticides have adverse effects on non-target invertebrate species. Invertebrates constitute a substantial part of the diet of many bird species during the breeding season and are indispensable for raising offspring. We investigated the hypothesis that the most widely used neonicotinoid insecticide, imidacloprid, has a negative impact on insectivorous bird populations. Here we show that, in the Netherlands, local population trends were significantly more negative in areas with higher surface-water concentrations of imidacloprid. At imidacloprid concentrations of more than 20 nanograms per litre, bird populations tended to decline by 3.5 per cent on average annually. Additional analyses revealed that this spatial pattern of decline appeared only after the introduction of imidacloprid to the Netherlands, in the mid-1990s. We further show that the recent negative relationship remains after correcting for spatial differences in land-use changes that are known to affect bird populations in farmland. Our results suggest that the impact of neonicotinoids on the natural environment is even more substantial than has recently been reported and is reminiscent of the effects of persistent insecticides in the past. Future legislation should take into account the potential cascading effects of neonicotinoids on ecosystems.


Asunto(s)
Aves/fisiología , Dieta/veterinaria , Monitoreo del Ambiente , Cadena Alimentaria , Imidazoles/efectos adversos , Insectos , Insecticidas/efectos adversos , Nitrocompuestos/efectos adversos , Agricultura , Animales , Neonicotinoides , Países Bajos , Dinámica Poblacional/estadística & datos numéricos , Contaminantes del Agua/efectos adversos
7.
PLoS One ; 7(4): e35272, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22523579

RESUMEN

Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.


Asunto(s)
Aves/fisiología , Cambio Climático , Ecosistema , Características de la Residencia , Animales , Clima , Extinción Biológica , Humanos , Países Bajos , Dinámica Poblacional , Reproducción
8.
Proc Biol Sci ; 277(1685): 1259-66, 2010 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-20018784

RESUMEN

One consequence of climate change is an increasing mismatch between timing of food requirements and food availability. Such a mismatch is primarily expected in avian long-distance migrants because of their complex annual cycle, and in habitats with a seasonal food peak. Here we show that insectivorous long-distance migrant species in The Netherlands declined strongly (1984-2004) in forests, a habitat characterized by a short spring food peak, but that they did not decline in less seasonal marshes. Also, within generalist long-distance migrant species, populations declined more strongly in forests than in marshes. Forest-inhabiting migrant species arriving latest in spring declined most sharply, probably because their mismatch with the peak in food supply is greatest. Residents and short-distance migrants had non-declining populations in both habitats, suggesting that habitat quality did not deteriorate. Habitat-related differences in trends were most probably caused by climate change because at a European scale, long-distance migrants in forests declined more severely in western Europe, where springs have become considerably warmer, when compared with northern Europe, where temperatures during spring arrival and breeding have increased less. Our results suggest that trophic mismatches may have become a major cause for population declines in long-distance migrants in highly seasonal habitats.


Asunto(s)
Migración Animal , Aves/fisiología , Cambio Climático , Ecosistema , Estaciones del Año , Animales , Demografía , Europa (Continente) , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA