RESUMEN
Tropical montane forest ecosystems are pivotal for sustaining biodiversity and essential terrestrial ecosystem services, including the provision of high-quality fresh water. Nonetheless, the impact of montane deforestation and climate change on the capacity of forests to deliver ecosystem services is yet to be fully understood. In this study, we offer observational evidence demonstrating the response of air temperature and cloud base height to deforestation in African montane forests over the last two decades. Our findings reveal that approximately 18% (7.4 ± 0.5 million hectares) of Africa's montane forests were lost between 2003 and 2022. This deforestation has led to a notable increase in maximum air temperature (1.37 ± 0.58 °C) and cloud base height (236 ± 87 metres), surpassing shifts attributed solely to climate change. Our results call for urgent attention to montane deforestation, as it poses serious threats to biodiversity, water supply, and ecosystem services in the tropics.
Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Temperatura , Clima Tropical , África , Ecosistema , Árboles/crecimiento & desarrolloRESUMEN
Waste plastics such as polyethylene terephthalate (w-PET) and stockpiled discard coal (d-coal) pose a global environmental threat as they are disposed of in large quantities as solid waste into landfills and are particularly hazardous due to spontaneous combustion of d-coal that produces greenhouse gases (GHG) and the non-biodegradability of w-PET plastic products. This study reports on the development of a composite material, prepared from w-PET and d-coal, with physical and chemical properties similar to that of metallurgical coke. The w-PET/d-coal composite was synthesized via a co-carbonization process at 700 °C under a constant flow of nitrogen gas. Proximate analysis results showed that a carbonized w-PET/d-coal composite could attain up to 35% improvement in fixed carbon content compared to its d-coal counterpart, such that an initial fixed carbon content of 14-75% in carbonized discard coal could be improved to 49-86% in carbonized w-PET/d-coal composites. The results clearly demonstrate the role of d-coal ash on the degree of thermo-catalytic conversion of w-PET to solid carbon, showing that the yield of carbon derived from w-PET (i.e., c-PET) was proportional to the ash content of d-coal. Furthermore, the chemical and physical characterization of the composition and structure of the c-PET/d-coal composite showed evidence of mainly graphitized carbon and a post-carbonization caking ability similar to that of metallurgical coke. The results obtained in this study show potential for the use of waste raw materials, w-PET and d-coal, towards the development of an eco-friendly reductant with comparable chemical and physical properties to metallurgical coke.