RESUMEN
Mitochondrial membrane potential (Δψ) and morphology are considered key readouts of mitochondrial functional state. This morphofunction can be studied using fluorescent dyes ("probes") like tetramethylrhodamine methyl ester (TMRM) and Mitotrackers (MTs). Although these dyes are broadly used, information comparing their performance in mitochondrial morphology quantification and Δψ-sensitivity in the same cell model is still scarce. Here we applied epifluorescence microscopy of primary human skin fibroblasts to evaluate TMRM, Mitotracker Red CMXros (CMXros), Mitotracker Red CMH2Xros (CMH2Xros), Mitotracker Green FM (MG) and Mitotracker Deep Red FM (MDR). All probes were suited for automated quantification of mitochondrial morphology parameters when Δψ was normal, although they did not deliver quantitatively identical results. The mitochondrial localization of TMRM and MTs was differentially sensitive to carbonyl cyanide-4-phenylhydrazone (FCCP)-induced Δψ depolarization, decreasing in the order: TMRMâ¯â«â¯CHM2Xrosâ¯=â¯CMXrosâ¯=â¯MDRâ¯>â¯MG. To study the effect of reversible Δψ changes, the impact of photo-induced Δψ "flickering" was studied in cells co-stained with TMRM and MG. During a flickering event, individual mitochondria displayed subsequent TMRM release and uptake, whereas this phenomenon was not observed for MG. Spatiotemporal and computational analysis of the flickering event provided evidence that TMRM redistributes between adjacent mitochondria by a mechanism dependent on Δψ and TMRM concentration. In summary, this study demonstrates that: (1) TMRM and MTs are suited for automated mitochondrial morphology quantification, (2) numerical data obtained with different probes is not identical, and (3) all probes are sensitive to FCCP-induced Δψ depolarization, with TMRM and MG displaying the highest and lowest sensitivity, respectively. We conclude that TMRM is better suited for integrated analysis of Δψ and mitochondrial morphology than the tested MTs under conditions that Δψ is not substantially depolarized.
Asunto(s)
Aldehídos , Mitocondrias , Humanos , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Aldehídos/metabolismo , Aldehídos/farmacología , Fibroblastos/metabolismo , Compuestos OrgánicosRESUMEN
Macromolecules of various sizes induce crowding of the cellular environment. This crowding impacts on biochemical reactions by increasing solvent viscosity, decreasing the water-accessible volume and altering protein shape, function, and interactions. Although mitochondria represent highly protein-rich organelles, most of these proteins are somehow immobilized. Therefore, whether the mitochondrial matrix solvent exhibits macromolecular crowding is still unclear. Here, we demonstrate that fluorescent protein fusion peptides (AcGFP1 concatemers) in the mitochondrial matrix of HeLa cells display an elongated molecular structure and that their diffusion constant decreases with increasing molecular weight in a manner typical of macromolecular crowding. Chloramphenicol (CAP) treatment impaired mitochondrial function and reduced the number of cristae without triggering mitochondrial orthodox-to-condensed transition or a mitochondrial unfolded protein response. CAP-treated cells displayed progressive concatemer immobilization with increasing molecular weight and an eightfold matrix viscosity increase, compatible with increased macromolecular crowding. These results establish that the matrix solvent exhibits macromolecular crowding in functional and dysfunctional mitochondria. Therefore, changes in matrix crowding likely affect matrix biochemical reactions in a manner depending on the molecular weight of the involved crowders and reactants.
Asunto(s)
Mitocondrias , Proteínas , Humanos , Células HeLa , Sustancias Macromoleculares/metabolismo , Proteínas/metabolismo , Solventes/metabolismo , Mitocondrias/metabolismoRESUMEN
Attachment of cargo molecules to lipophilic triphenylphosphonium (TPP+) cations is a widely applied strategy for mitochondrial targeting. We previously demonstrated that the vitamin E-derived antioxidant Trolox increases the levels of active mitochondrial complex I (CI), the first complex of the electron transport chain (ETC), in primary human skin fibroblasts (PHSFs) of Leigh Syndrome (LS) patients with isolated CI deficiency. Primed by this finding, we here studied the cellular effects of mitochondria-targeted Trolox (MitoE10), mitochondria-targeted ubiquinone (MitoQ10) and their mitochondria-targeting moiety decylTPP (C10-TPP+). Chronic treatment (96 h) with these molecules of PHSFs from a healthy subject and an LS patient with isolated CI deficiency (NDUFS7-V122M mutation) did not greatly affect cell number. Unexpectedly, this treatment reduced CI levels/activity, lowered the amount of ETC supercomplexes, inhibited mitochondrial oxygen consumption, increased extracellular acidification, altered mitochondrial morphology and stimulated hydroethidine oxidation. We conclude that the mitochondria-targeting decylTPP moiety is responsible for the observed effects and advocate that every study employing alkylTPP-mediated mitochondrial targeting should routinely include control experiments with the corresponding alkylTPP moiety.
Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Transporte de Electrón , Complejo I de Transporte de Electrón/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos/metabolismo , Humanos , Mitocondrias/metabolismo , Enfermedades MitocondrialesRESUMEN
Following brief exposure to endogenous atherogenic particles, such as oxidized low-density lipoprotein (oxLDL), monocytes/macrophages can adopt a long-term pro-inflammatory phenotype, which is called trained immunity. This mechanism might contribute to the chronic low-grade inflammation that characterizes atherosclerosis. In this study, we aim to elucidate immunometabolic pathways that drive oxLDL-induced trained immunity. Primary isolated human monocytes were exposed to oxLDL for 24 h, and after five days stimulated with LPS to measure the cytokine production capacity. RNA-sequencing revealed broad increases in genes enriched in mitochondrial pathways after 24 h of oxLDL exposure. Further omics profiling of oxLDL-trained macrophages via intracellular metabolomics showed an enrichment for tricarboxylic acid (TCA) cycle metabolites. Single cell analysis revealed that oxLDL-trained macrophages contain larger mitochondria, potentially likely linked to increased oxidative phosphorylation (OXPHOS) activity. Co-incubation with pharmacological blockers of OXPHOS inhibited oxLDL-induced trained immunity. The relevance of OXPHOS was confirmed in a cohort of 243 healthy subjects showing that genetic variation in genes coding for enzymes relevant to OXPHOS correlated with the capacity of monocytes to be trained with oxLDL. Interestingly, OXPHOS appears to play an important role in the increased cytokine hyperresponsiveness by oxLDL-trained macrophages. The TCA-cycle can also be fuelled by glutamine and free fatty acids, and pharmacological blockade of these pathways could prevent oxLDL-induced trained immunity. This study demonstrates that the mitochondria of oxLDL-trained macrophages undergo changes to their function and form with OXPHOS being an important mechanism for trained immunity, which could unveil novel pharmacological targets to prevent atherogenesis.
RESUMEN
Phytochemical antioxidants like gallic and caffeic acid are constituents of the normal human diet that display beneficial health effects, potentially via activating stress response pathways. Using primary human skin fibroblasts (PHSFs) as a model, we here investigated whether such pathways were induced by novel mitochondria-targeted variants of gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4). Both molecules reduced cell viability with similar kinetics and potency (72 h incubation, IC50 ~23 µM). At a relatively high but non-toxic concentration (12.5 µM), AntiOxBEN2 and AntiOxCIN4 increased ROS levels (at 24 h), followed by a decline (at 72 h). Further analysis at the 72 h timepoint demonstrated that AntiOxBEN2 and AntiOxCIN4 did not alter mitochondrial membrane potential (Δψ), but increased cellular glutathione (GSH) levels, mitochondrial NAD(P)H autofluorescence, and mitochondrial superoxide dismutase 2 (SOD2) protein levels. In contrast, cytosolic SOD1 protein levels were not affected. AntiOxBEN2 and AntiOxCIN4 both stimulated the gene expression of Nuclear factor erythroid 2-related factor 2 (NRF2; a master regulator of the cellular antioxidant response toward oxidative stress). AntiOxBEN2 and ANtiOxCIN4 differentially affected the gene expression of the antioxidants Heme oxygenase 1 (HMOX1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1). Both antioxidants did not protect from cell death induced by GSH depletion and AntiOxBEN2 (but not AntiOxCIN4) antagonized hydrogen peroxide-induced cell death. We conclude that AntiOxBEN2 and AntiOxCIN4 increase ROS levels, which stimulates NRF2 expression and, as a consequence, SOD2 and GSH levels. This highlights that AntiOxBEN2 and AntiOxCIN4 can act as prooxidants thereby activating endogenous ROS-protective pathways.
Asunto(s)
Antioxidantes , Factor 2 Relacionado con NF-E2 , Antioxidantes/metabolismo , Antioxidantes/farmacología , Fibroblastos/metabolismo , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Heparan sulfate (HS) is a linear polysaccharide with high structural diversity. Different HS epitopes have been detected and localized using single chain variable fragment (scFv) antibodies from a 'single pot' phage display library containing a randomized complementarity determining region of the heavy chain (CDR3). In this study, we created a new library containing anti-HS scFvs that all harbor a dp-38 heavy chain segment where the CDR3 region was engineered to contain the XBBXBX heparin binding consensus site (X = any amino acid, B = R, K or H). The library contained ~1.73 × 106 unique antibodies and was biopanned against HS from several sources. The selected antibodies were sequenced and chemically/immunohistologically characterized. A number of 67 anti-HS scFv antibodies were selected, of which 31 contained a XBBXBX CDR3 sequence. There was a clear preference for glycine at the first and proline at the fourth position of the CDR3. The sequence GZZP(R/K)X (Z = R, K or H, but may also contain N, S, or Q) was unusually overrepresented. Selected antibodies reacted with HS/heparin, but not with other glycosaminoglycans. Antibodies reacted differentially with respect to N-, 2-O, or 6-O-desulfated heparin preparations, and showed distinct topologies of HS epitopes in rat kidney sections. The library may be instrumental in the selection of a large pool of HS epitope-specific antibodies, and - since all antibodies differ only in their 6 amino acid CDR region - may be a tool for a rational design of antibodies recognizing specific HS sulfation patterns.
Asunto(s)
Heparitina Sulfato/inmunología , Biblioteca de Péptidos , Anticuerpos de Cadena Única/inmunología , Anticuerpos de Dominio Único/química , Animales , Sitios de Unión , Bioprospección , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Epítopos/inmunología , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Riñón/inmunología , Riñón/metabolismo , Masculino , Ratas Wistar , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/metabolismo , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/metabolismoRESUMEN
NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.
Asunto(s)
Epilepsias Mioclónicas/genética , Discapacidad Intelectual/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Polineuropatías/genética , Niño , Preescolar , Trastornos Congénitos de Glicosilación/diagnóstico por imagen , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/patología , Epilepsias Mioclónicas/diagnóstico por imagen , Epilepsias Mioclónicas/patología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Masculino , Mitocondrias/genética , Mitocondrias/patología , Mutación/genética , Polineuropatías/diagnóstico por imagen , Polineuropatías/patologíaRESUMEN
Technologies to sequence nucleic acids/proteins are widely available, but straightforward methodologies to sequence complex polysaccharides are lacking. We here put forward a strategy to sequence glycosaminoglycans, long linear polysaccharides involved in many biochemical processes. The method is based on the covalent immobilization and (immuno)chemical characterization of only those size-separated saccharides that harbor the original reducing end of the full-length chain. Using this methodology, the saccharide sequence of the chondroitin sulfate chain of the proteoglycan bikunin was determined. The method can be performed in any standard biochemical lab and opens studies to the interaction of complex saccharide sequences with other biomolecules.
Asunto(s)
Glicosaminoglicanos/química , Conformación de Carbohidratos , Glicosaminoglicanos/genéticaRESUMEN
The ability to characterize alterations in heparan sulfate (HS) structure during development or as a result of loss or mutation of one or more components of the HS biosynthetic pathway is essential for broad understanding of the effects these changes may have on cell/tissue function. The use of anti-HS antibodies provides an opportunity to study HS chain composition in situ, with a multitude of different antibodies having been generated that recognize subtle differences in HS patterning, with the number and positioning of sulfate groups influencing antibody binding affinity. Flow cytometry is a valuable technique to enable the rapid characterization of the changes in HS-specific antibody binding in situ, allowing multiple cell types to be directly compared. Additionally fluorescent-activated cell sorting (FACS) allows fractionation of cells based on their HS-epitope expression.
Asunto(s)
Fraccionamiento Celular/métodos , Epítopos/inmunología , Citometría de Flujo/métodos , Heparitina Sulfato/inmunología , Animales , Especificidad de Anticuerpos , Separación Celular , Ratones , Coloración y EtiquetadoRESUMEN
HS (heparan sulfate) is a long linear polysaccharide, variably modified by epimerization and sulfation reactions, and is organized into different domains defined by the extent of modification. To further elucidate HS structural organization, the relative position of different HS structures, identified by a set of phage-display-derived anti-HS antibodies, was established. Two strategies were employed: inhibition of HS biosynthesis using 4-deoxy-GlcNAc, followed by resynthesis, and limited degradation of HS using heparinases. Using both approaches, information about the position of antibody-defined HS structures was identified. The HS structure recognized by the antibody NS4F5, rigorously identified as (GlcN6S-IdoA2S)3, was found towards the non-reducing end of the HS chain.
Asunto(s)
Carcinoma/metabolismo , Heparitina Sulfato/química , Riñón/metabolismo , Melanoma/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Desoxiglucosa/análogos & derivados , Desoxiglucosa/farmacología , Inhibidores Enzimáticos/farmacología , Mapeo Epitopo , Flavobacterium/enzimología , Glucosamina/análogos & derivados , Glucosamina/farmacología , Liasa de Heparina/metabolismo , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/metabolismo , Humanos , Hidrólisis , Inmunohistoquímica , Riñón/citología , Cinética , Masculino , Melanoma/patología , Estructura Molecular , Ratas , Ratas WistarRESUMEN
Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analogue of the HS constituent GlcNAc and studied the compound's metabolic fate and its effect on angiogenesis. The 4-deoxy analogue was activated intracellularly into UDP-4-deoxy-GlcNAc, and HS expression was inhibited up to â¼96% (IC50 = 16 µM). HS chain size was reduced, without detectable incorporation of the 4-deoxy analogue, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors such as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Microinjection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All of these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis, which hampers pro-angiogenic signaling and neo-vessel formation.
Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Heparitina Sulfato/genética , Neovascularización Patológica/fisiopatología , Uridina Difosfato N-Acetilglucosamina/análogos & derivados , Uridina Difosfato N-Acetilglucosamina/farmacología , Animales , Pollos , Regulación hacia Abajo/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Heparitina Sulfato/biosíntesis , Heparitina Sulfato/metabolismo , Ácido Idurónico/química , Transducción de Señal/efectos de los fármacos , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Pez CebraRESUMEN
Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), playing a key role in diverse physiological and pathological processes. ATX exists in distinct splice variants, but isoform-specific functions remain elusive. Here we characterize the ATXα isoform, which differs from the canonical form (ATXß) in having a 52-residue polybasic insertion of unknown function in the catalytic domain. We find that the ATXα insertion is susceptible to cleavage by extracellular furin-like endoproteases, but cleaved ATXα remains structurally and functionally intact due to strong interactions within the catalytic domain. Through ELISA and surface plasmon resonance assays, we show that ATXα binds specifically to heparin with high affinity (K(d) ~10(-8) M), whereas ATXß does not; furthermore, heparin moderately enhanced the lysophospholipase D activity of ATXα. We further show that ATXα, but not ATXß, binds abundantly to SKOV3 carcinoma cells. ATXα binding was abolished after treating the cells with heparinase III, but not after chondroitinase treatment. Thus, the ATXα insertion constitutes a cleavable heparin-binding domain that mediates interaction with heparan sulfate proteoglycans, thereby targeting LPA production to the plasma membrane.
Asunto(s)
Proteoglicanos de Heparán Sulfato/química , Heparina/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Movimiento Celular , Cristalografía por Rayos X/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Células HEK293 , Humanos , Cinética , Lípidos/química , Lisofosfolípidos/química , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de SeñalRESUMEN
Glycosaminoglycans (GAGs) are long, anionic polysaccharides involved in many basic aspects of mammalian physiology and pathology. Here we describe a method to extract GAGs from formalin-fixed, paraffin-embedded tissues and found that they are structurally comparable with GAGs extracted from frozen tissues. We employed this method to structurally characterize GAGs in tissues, including laser-dissected layers of skin and pathological specimens. This method enables the use of the archival paraffin-embedded material for detailed (structural) analysis of GAGs.
Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/aislamiento & purificación , Métodos Analíticos de la Preparación de la Muestra , Animales , Criopreservación , Disacáridos/análisis , Fijadores , Formaldehído , Ratones , Ratones Desnudos , Adhesión en Parafina , Ratas , Ratas Wistar , Piel/químicaRESUMEN
Glycosaminoglycans, like heparin, are frequently incorporated in biomaterials because of their capacity to bind and store growth factors and because of their hydrating properties. Heparin is also often used in biomaterials for its anticoagulant activity. Analysis of biomaterial-bound heparin is challenging because most assays are based on heparin in solution. In this study, seven different methods were probed to analyze heparin covalently attached to collagen scaffolds. For each method, the basic mechanism and the advantages and disadvantages are given. An analysis by the factor Xa assay and the Farndale assay clearly indicated that the amount of immobilized heparin cannot be determined correctly when the scaffold is intact. Scaffolds had to be proteolytically digested or acid treated to obtain reliable measurements. Methods used to quantify the amount of bound heparin included a hexosamine assay, an uronic acid assay, a Farndale assay, agarose gel electrophoresis, and immuno-dot blot analysis. Location and semiquantification of heparin were accomplished by immunofluorescence. Although all assays had their advantages and disadvantages, the hexosamine assay turned out to be the most robust and is recommended as the preferred assay to quantify the amount of heparin bound to scaffolds. It is applicable to all scaffolds that are acid hydrolyzable. This study may allow researchers in the field to select the most appropriate method to analyze glycosaminoglycans in biomaterials.
Asunto(s)
Anticoagulantes/análisis , Anticoagulantes/química , Materiales Biocompatibles/análisis , Materiales Biocompatibles/química , Bioensayo/métodos , Heparina/análisis , Heparina/química , Pruebas de Coagulación Sanguínea , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Heparan sulfate (HS) binds and modulates the transport and activity of a large repertoire of regulatory proteins. The HS phage display antibodies are powerful tools for the analysis of native HS structure in situ; however, their epitopes are not well defined. Analysis of the binding specificities of a set of HS antibodies by competitive binding assays with well defined chemically modified heparins demonstrates that O-sulfates are essential for binding; however, increasing sulfation does not necessarily correlate with increased antibody reactivity. IC50 values for competition with double modified heparins were not predictable from IC50 values with corresponding singly modified heparins. Binding assays and immunohistochemistry revealed that individual antibodies recognize distinct epitopes and that these are not single linear sequences but families of structurally similar motifs in which subtle variations in sulfation and conformation modify the affinity of interaction. Modeling of the antibodies demonstrates that they possess highly basic CDR3 and surrounding surfaces, presenting a number of possible orientations for HS binding. Unexpectedly, there are significant differences between the existence of epitopes in tissue sections and observed in vitro in dot blotted tissue extracts, demonstrating that in vitro specificity does not necessarily correlate with specificity in situ/vivo. The epitopes are therefore more complex than previously considered. Overall, these data have significance for structure-activity relationships of HS, because the model of one antibody recognizing multiple HS structures and the influence of other in situ HS-binding proteins on epitope availability are likely to reflect the selectivity of many HS-protein interactions in vivo.
Asunto(s)
Anticuerpos Monoclonales/química , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Epítopos/química , Heparitina Sulfato/química , Secuencias de Aminoácidos/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos/inmunología , Epítopos/inmunología , Heparitina Sulfato/inmunología , Ratones , Ratas , Ratas Sprague-DawleyRESUMEN
Dermatan sulfate (DS) expression in normal tissue and ovarian cancer was investigated using the novel, phage display-derived antibody GD3A12 that was selected against embryonic glycosaminoglycans (GAGs). Antibody GD3A12 was especially reactive with DS rich in IdoA-GalNAc4S disaccharide units. IdoA residues are important for antibody recognition as DS polymers with low numbers of IdoA residues were less reactive, and expression of the DS epimerase in ovarian carcinoma cells was associated with expression of the GD3A12 epitope. Moreover, staining of antibody GD3A12 was abolished by chondroitinase-B lyase digestion. Expression of DS domains defined by antibody GD3A12 was confined to connective tissue of most organs examined and presented as a typical fibrillar-type of staining. Differential expression of the DS epitopes recognized by antibodies GD3A12 and LKN1 (4/2,4 di-O-sulfated DS) was best seen in thymus and spleen, indicating differential expression of various DS domains in these organs. In ovarian carcinomas strong DS expression was found in the stromal parts, and occasionally on tumor cells. Partial co-localization in ovarian carcinomas was observed with decorin, versican and type I collagen suggesting a uniform distribution of this specific DS epitope. This unique anti-DS antibody may be instrumental to investigate the function, expression, and localization of specific DS domains in health and disease.
Asunto(s)
Adenocarcinoma/metabolismo , Anticuerpos/inmunología , Dermatán Sulfato/metabolismo , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Animales , Línea Celular Tumoral , Dermatán Sulfato/inmunología , Embrión de Mamíferos/metabolismo , Epítopos , Femenino , Humanos , Masculino , Ratones , Especificidad de Órganos , Ratas , Ratas WistarRESUMEN
Heparinoids are used in the clinic as anticoagulants. A specific pentasaccharide in heparinoids activates antithrombin III, resulting in inactivation of factor Xa and-when additional saccharides are present-inactivation of factor IIa. Structural and functional analysis of the heterogeneous heparinoids generally requires advanced equipment, is time consuming, and needs (extensive) sample preparation. In this study, a novel and fast method for the characterization of heparinoids is introduced based on reactivity with nine unique anti-heparin antibodies. Eight heparinoids were biochemically analyzed by electrophoresis and their reactivity with domain-specific anti-heparin antibodies was established by ELISA. Each heparinoid displayed a distinct immunoprofile matching its structural characteristics. The immunoprofile could also be linked to biological characteristics, such as the anti-Xa/anti-IIa ratio, which was reflected by reactivity of the heparinoids with antibodies HS4C3 (indicative for 3-O-sulfates) and HS4E4 (indicative for domains allowing anti-factor IIa activity). In addition, the immunoprofile could be indicative for heparinoid-induced side-effects, such as heparin-induced thrombocytopenia, as illustrated by reactivity with antibody NS4F5, which defines a very high sulfated domain. In conclusion, immunoprofiling provides a novel, fast, and simple methodology for the characterization of heparinoids, and allows high-throughput screening of (new) heparinoids for defined structural and biological characteristics.
Asunto(s)
Anticoagulantes/química , Anticoagulantes/inmunología , Heparinoides/química , Heparinoides/inmunología , Animales , Especificidad de Anticuerpos , Anticoagulantes/metabolismo , Sitios de Unión de Anticuerpos , Bovinos , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Heparinoides/metabolismo , Humanos , Sueros Inmunes/metabolismo , Ratones , PorcinosRESUMEN
Chondroitin sulfate (CS) is abundantly present in the tumor stroma, and tumor-specific CS modifications might be potential targets to influence tumor development. We applied the phage display technology to select antibodies that identify these tumor-specific CS modifications. Antibody GD3G7 was selected against embryonic glycosaminoglycans, and it reacted strongly with CS-E (rich in GlcA-GalNAc4S6S units). In ovarian adenocarcinomas, strong expression of this CS-E epitope was found in the extracellular matrix, and occasionally on tumor cells. No expression was found in normal ovary and cystadenomas. Differential expression was found in ovarian carcinoma cell lines, which correlated with the gene expression of the GalNAc4S-6st enzyme, involved in biosynthesis of CS-E. Vascular endothelial growth factor (VEGF)-sensitive fenestrated (in normal tissues) and tumor blood vessels were both identified by antibody GD3G7, which might implicate a role for CS-E in VEGF biology. VEGF bound to CS-E and antibody GD3G7 could compete for binding of VEGF to CS-E. In conclusion, antibody GD3G7 identified rare CS-E-like structures that were strongly expressed in ovarian adenocarcinomas. This antibody might therefore be instrumental for identifying tumor-related CS alterations.
Asunto(s)
Adenocarcinoma/metabolismo , Anticuerpos Antineoplásicos/inmunología , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/metabolismo , Neoplasias Ováricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Adenocarcinoma/química , Adenocarcinoma/genética , Animales , Línea Celular Tumoral , Sulfatos de Condroitina/inmunología , Epítopos/análisis , Epítopos/inmunología , Epítopos/metabolismo , Femenino , Expresión Génica , Glicosaminoglicanos/inmunología , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Neoplasias Ováricas/química , Neoplasias Ováricas/genética , Biblioteca de Péptidos , Ratas , Sulfotransferasas/química , Sulfotransferasas/genética , Sulfotransferasas/metabolismo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidoresRESUMEN
Antibodies against heparan sulfate (HS) are useful tools to study the structural diversity of HS. They demonstrate the large sequential variation within HS and show the distribution of HS oligosaccharide sequences within their natural environment. We analyzed the distribution and the structural characteristics of the oligosaccharide epitope recognized by anti-HS antibody HS4C3. Biosynthetic and synthetic heparin-related oligosaccharide libraries were used in affinity chromatography, immunoprecipitation, and enzyme-linked immunosorbent assay to identify this epitope as a 3-O-sulfated motif with antithrombin binding capacity. The antibody binds weakly to any N-sulfated, 2-O- and 6-O-sulfated hexa- to octasaccharide fragment but strongly to the corresponding oligosaccharide when there is a 3-O-sulfated glucosamine residue present in the sequence. This difference was highlighted by affinity interaction and immunohistochemistry at salt concentrations from 500 mm. At physiological salt conditions the antibody strongly recognized basal lamina of epithelia and endothelia. At 500 mm salt conditions, when 3-O sulfation is required for binding, antibody recognition was more restricted and selective. Antibody HS4C3 bound similar tissue structures as antithrombin in rat kidney. Furthermore, antithrombin and antibody HS4C3 could compete with one another for binding to heparin. Antibody HS4C3 was also able to inhibit the anti-coagulant activities of heparin and Arixtra as demonstrated using the activated partial thromboplastin time clotting and the anti-factor Xa assays. In summary, antibody HS4C3 selectively detects 3-O-sulfated HS structures and interferes with the coagulation activities of heparin by association with the anti-thrombin binding pentasaccharide sequence.
Asunto(s)
Anticuerpos/química , Heparitina Sulfato/química , Oligosacáridos/química , Animales , Antitrombinas/química , Unión Competitiva , Coagulación Sanguínea , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Factor Xa/química , Glucosamina/química , Inmunoprecipitación , Riñón/metabolismo , Masculino , Tiempo de Tromboplastina Parcial , Unión Proteica , Ratas , Ratas Wistar , Sales (Química)/farmacología , Trombina/químicaRESUMEN
The snail glycosaminoglycan acharan sulfate (AS) is structurally related to heparan sulfates (HS) and has a repeating disaccharide structure of alpha-d-N-acetylglucosaminyl-2-O-sulfo-alpha-l-iduronic acid (GlcNAc-IdoA2S) residues. Using the phage display technology, a unique antibody (MW3G3) was selected against AS with a V(H)3, DP 47, and a CDR3 amino acid sequence of QKKRPRF. Antibody MW3G3 did not react with desulfated, N-deacetylated or N-sulfated AS, indicating that reactivity depends on N-acetyl and 2-O-sulfate groups. Antibody MW3G3 also had a high preference for (modified) heparin oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. In tissues, antibody MW3G3 identified a HS oligosaccharide epitope containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues as enzymatic N-deacetylation of HS in situ prevented staining, and 2-O-sulfotransferase-deficient Chinese hamster ovary cells were not reactive. An immunohistochemical survey using various rat organs revealed a distinct distribution of the MW3G3 epitope, which was primarily present in the basal laminae of most (but not all) blood vessels and of some epithelia, including human skin. No staining was observed in the glycosaminoglycan-rich tumor matrix of metastatic melanoma. In conclusion, we have selected an antibody that identifies HS oligosaccharides containing N-acetylated glucosamine and 2-O-sulfated iduronic acid residues. This antibody may be instrumental in identifying structural alterations in HS in health and disease.