RESUMEN
Background: Cerebral amyloid angiopathy (CAA) is a cerebral small vessel disease in which amyloid-ß accumulates in vessel walls. CAA is a leading cause of symptomatic lobar intracerebral hemorrhage and an important contributor to age-related cognitive decline. Recent work has suggested that vascular dysfunction may precede symptomatic stages of CAA, and that spontaneous slow oscillations in arteriolar diameter (termed vasomotion), important for amyloid-ß clearance, may be impaired in CAA. Methods: To systematically study the progression of vascular dysfunction in CAA, we used the APP23 mouse model of amyloidosis, which is known to develop spontaneous cerebral microbleeds mimicking human CAA. Using in vivo 2-photon microscopy, we longitudinally imaged unanesthetized APP23 transgenic mice and wildtype littermates from 7 to 14 months of age, tracking amyloid-ß accumulation and vasomotion in individual pial arterioles over time. MRI was used in separate groups of 12-, 18-, and 24-month-old APP23 transgenic mice and wildtype littermates to detect microbleeds and to assess cerebral blood flow and cerebrovascular reactivity with pseudo-continuous arterial spin labeling. Results: We observed a significant decline in vasomotion with age in APP23 mice, while vasomotion remained unchanged in wildtype mice with age. This decline corresponded in timing to initial vascular amyloid-ß deposition (â¼8-10 months of age), although was more strongly correlated with age than with vascular amyloid-ß burden in individual arterioles. Declines in vasomotion preceded the development of MRI-visible microbleeds and the loss of smooth muscle actin in arterioles, both of which were observed in APP23 mice by 18 months of age. Additionally, evoked cerebrovascular reactivity was intact in APP23 mice at 12 months of age, but significantly lower in APP23 mice by 24 months of age. Conclusions: Our findings suggest that a decline in spontaneous vasomotion is an early, potentially pre-symptomatic, manifestation of CAA and vascular dysfunction, and a possible future treatment target.
RESUMEN
BACKGROUND: Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed with a multimodality prediction model. OBJECTIVE: This study aimed to investigate whether an explainable deep learning-based approach allows risk prediction with only electrocardiogram (ECG) data. METHODS: A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning-based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression. RESULTS: The deep learning-based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76-0.83), comparable to the current prediction model (C statistic, 0.83 [95% CI, 0.79-0.88]; P = .054) and outperforming a model based on conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58-0.73]; P < .001). Clinical simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional diagnostics while outperforming the multimodal prediction model in all patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai). CONCLUSION: Our deep learning-based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.
Asunto(s)
Algoritmos , Proteínas de Unión al Calcio , Aprendizaje Profundo , Electrocardiografía , Humanos , Electrocardiografía/métodos , Masculino , Femenino , Medición de Riesgo/métodos , Persona de Mediana Edad , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/diagnóstico , Cardiomiopatías/fisiopatología , Cardiomiopatías/etiología , Adulto , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/fisiopatología , Taquicardia Ventricular/etiología , Estudios RetrospectivosRESUMEN
Analysis of climate policy scenarios has become an important tool for identifying mitigation strategies, as shown in the latest Intergovernmental Panel on Climate Change Working Group III report1. The key outcomes of these scenarios differ substantially not only because of model and climate target differences but also because of different assumptions on behavioural, technological and socio-economic developments2-4. A comprehensive attribution of the spread in climate policy scenarios helps policymakers, stakeholders and scientists to cope with large uncertainties in this field. Here we attribute this spread to the underlying drivers using Sobol decomposition5, yielding the importance of each driver for scenario outcomes. As expected, the climate target explains most of the spread in greenhouse gas emissions, total and sectoral fossil fuel use, total renewable energy and total carbon capture and storage in electricity generation. Unexpectedly, model differences drive variation of most other scenario outcomes, for example, in individual renewable and carbon capture and storage technologies, and energy in demand sectors, reflecting intrinsic uncertainties about long-term developments and the range of possible mitigation strategies. Only a few scenario outcomes, such as hydrogen use, are driven by other scenario assumptions, reflecting the need for more scenario differentiation. This attribution analysis distinguishes areas of consensus as well as strong model dependency, providing a crucial step in correctly interpreting scenario results for robust decision-making.
RESUMEN
OBJECTIVES: The most recent valve-sparing root replacement technique combines the advantages of the reimplantation (David) and remodelling (Yacoub) techniques. The aortic root is reconstructed according to the remodelling technique, the aortic valve is repaired according to the principle of effective height, and an external ring provides annular support. The purpose of this study was to evaluate operative and mid-term outcomes using this technique in patients with Marfan syndrome. METHODS: Adult patients with Marfan syndrome who had an indication for aortic root surgery according to European Society of Cardiology guidelines and were operated on using this new root replacement technique were retrospectively evaluated. Follow-up was obtained from standard outpatient visits and included echocardiography. RESULTS: The study group comprised 22 patients (mean age 36 years, 68% males). Mean follow-up was 7.5 years. There were no mortalities. Two patients required aortic valve replacement because of aortic regurgitation. In both patients, the aortic root was severely dilated (≥65 mm) preoperatively, with grade III aortic valve regurgitation and aortic valve cusps that were very fragile. Aortic regurgitation was grade ≤I on follow-up in 18 of the remaining 20 patients. CONCLUSIONS: Valve-sparing root replacement using remodelling combined with aortic-ring annuloplasty is safe in patients with Marfan syndrome. The mid-term outcome is promising in patients undergoing elective valve-sparing root replacement at recommended root diameters. However, in patients with extremely dilated aortic roots and already severe aortic regurgitation, the technique should be used cautiously as aortic cusps are fragile and might not be suitable for durable repair. CLINICAL REGISTRATION NUMBER: UMCG Research registry #11208.
RESUMEN
Echocardiographic deformation curves provide detailed information on myocardial function. Deep neural networks (DNNs) may enable automated detection of disease features in deformation curves, and improve the clinical assessment of these curves. We aimed to investigate whether an explainable DNN-based pipeline can be used to detect and visualize disease features in echocardiographic deformation curves of phospholamban (PLN) p.Arg14del variant carriers. A DNN was trained to discriminate PLN variant carriers (n = 278) from control subjects (n = 621) using raw deformation curves obtained by 2D-speckle tracking in the longitudinal axis. A visualization technique was used to identify the parts of these curves that were used by the DNN for classification. The PLN variant carriers were clustered according to the output of the visualization technique. The DNN showed excellent discriminatory performance (C-statistic 0.93 [95% CI 0.87-0.97]). We identified four clusters with PLN-associated disease features in the deformation curves. Two clusters showed previously described features: apical post-systolic shortening and reduced systolic strain. The two other clusters revealed novel features, both reflecting delayed relaxation. Additionally, a fifth cluster was identified containing variant carriers without disease features in the deformation curves, who were classified as controls by the DNN. This latter cluster had a very benign disease course regarding development of ventricular arrhythmias. Applying an explainable DNN-based pipeline to myocardial deformation curves enables automated detection and visualization of disease features. In PLN variant carriers, we discovered novel disease features which may improve individual risk stratification. Applying this approach to other diseases will further expand our knowledge on disease-specific deformation patterns. Overview of the deep neural network-based pipeline for feature detection in myocardial deformation curves. Firstly, phospholamban (PLN) p.Arg14del variant carriers and controls were selected and a deep neural network (DNN) was trained to detect the PLN variant carriers. Subsequently, a clustering-based approach was performed on the attention maps of the DNN, which revealed 4 distinct phenotypes of PLN variant carriers with different prognoses. Moreover, a cluster without features and a benign prognosis was detected.
Asunto(s)
Proteínas de Unión al Calcio , Miocardio , Humanos , Valor Predictivo de las Pruebas , Miocardio/patología , Proteínas de Unión al Calcio/genética , Redes Neurales de la ComputaciónRESUMEN
BACKGROUND: Coronavirus disease 2019 (COVID-19) patients can develop pulmonary fibrosis (PF), which is associated with impaired outcome. We assessed specific leukocytic transcriptome profiles associated with PF and the influence of early dexamethasone (DEXA) treatment on the clinical course of PF in critically ill COVID-19 patients. METHODS: We performed a pre-post design study in 191 COVID-19 patients admitted to the Intensive Care Unit (ICU) spanning two treatment cohorts: the pre-DEXA- (n = 67) and the DEXA-cohort (n = 124). PF was identified based on radiological findings, worsening of ventilatory parameters and elevated circulating PIIINP levels. Longitudinal transcriptome profiles of 52 pre-DEXA patients were determined using RNA sequencing. Effects of prednisone treatment on clinical fibrosis parameters and outcomes were analyzed between PF- and no-PF-patients within both cohorts. RESULTS: Transcriptome analyses revealed upregulation of inflammatory, coagulation and neutrophil extracellular trap-related pathways in PF-patients compared to no-PF patients. Key genes involved included PADI4, PDE4D, MMP8, CRISP3, and BCL2L15. Enrichment of several identified pathways was associated with impaired survival in a external cohort of patients with idiopathic pulmonary fibrosis. Following prednisone treatment, PF-related profiles reverted towards those observed in the no-PF-group. Likewise, PIIINP levels decreased significantly following prednisone treatment. PF incidence was 28% and 25% in the pre-DEXA- and DEXA-cohort, respectively (p = 0.61). ICU length-of-stay (pre-DEXA: 42 [29-49] vs. 18 [13-27] days, p < 0.001; DEXA: 42 [28-57] vs. 13 [7-24] days, p < 0.001) and mortality (pre-DEXA: 47% vs. 15%, p = 0.009; DEXA: 61% vs. 19%, p < 0.001) were higher in the PF-groups compared to the no-PF-groups within both cohorts. Early dexamethasone therapy did not influence these outcomes. CONCLUSIONS: ICU patients with COVID-19 who develop PF exhibit upregulated coagulation, inflammation, and neutrophil extracellular trap-related pathways as well as prolonged ICU length-of-stay and mortality. This study indicates that early dexamethasone treatment neither influences the incidence or clinical course of PF, nor clinical outcomes.
Asunto(s)
COVID-19 , Fibrosis Pulmonar Idiopática , Humanos , SARS-CoV-2 , Prednisona , Respiración Artificial , Dexametasona , Progresión de la EnfermedadRESUMEN
The SCN5A-1795insD founder variant is a unique SCN5A gene variant found in a large Dutch pedigree that first came to attention in the late 1950s. To date, this is still one of the largest and best described SCN5A founder families worldwide. It was the first time that a single pathogenic variant in SCN5A proved to be sufficient to cause a sodium channel overlap syndrome. Affected family members displayed features of Brugada syndrome, cardiac conduction disease and long QT syndrome type 3, thus encompassing features of both loss and gain of sodium channel function. This brief summary takes us past 70 years of clinical experience and over 2 decades of research. It is remarkable to what extent researchers and clinicians have managed to gain understanding of this complex phenotype in a relatively short time. Extensive clinical, genetic, electrophysiological and molecular studies have provided fundamental insights into SCN5A and the cardiac sodium channel Nav1.5.
RESUMEN
BACKGROUND: Endurance and frequent exercise are associated with earlier onset of arrhythmogenic right ventricular cardiomyopathy (ARVC) and ventricular arrhythmias (VA) in desmosomal gene variant carriers. Individuals with the pathogenic c.40_42del; p.(Arg14del) variant in the PLN gene are frequently diagnosed with ARVC or dilated cardiomyopathy (DCM). The aim of this study was to evaluate the effect of exercise in PLN p.(Arg14del) carriers. METHODS: In total, 207 adult PLN p.(Arg14del) carriers (39.1% male; mean age 53⯱ 15 years) were interviewed on their regular physical activity since the age of 10 years. The association of exercise with diagnosis of ARVC, DCM, sustained VA and hospitalisation for heart failure (HF) was studied. RESULTS: Individuals participated in regular physical activities with a median of 1661 metabolic equivalent of task (MET) hours per year (31.9 MET-hours per week) until clinical presentation. The 50% most and least active individuals had a similar frequency of sustained VA (18.3% vs 18.4%; pâ¯= 0.974) and hospitalisation for HF (9.6% vs 8.7%; pâ¯= 0.827). There was no relationship between exercise and survival free from (incident) sustained VA (pâ¯= 0.65), hospitalisation for HF (pâ¯= 0.81), diagnosis of ARVC (pâ¯= 0.67) or DCM (pâ¯= 0.39) during follow-up. In multivariate analyses, exercise was not associated with sustained VA or HF hospitalisation during follow-up in this relatively not-active cohort. CONCLUSION: There was no association between the amount of exercise and the susceptibility to develop ARVC, DCM, VA or HF in PLN p.(Arg14del) carriers. This suggested unaffected PLN p.(Arg14del) carriers can safely perform mild-moderate exercise, in contrast to desmosomal variant carriers and ARVC patients.
RESUMEN
The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Humanos , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/genética , Placofilinas/genética , Fenotipo , Arritmias Cardíacas , MutaciónRESUMEN
BACKGROUND: Truncating variants in desmoplakin (DSPtv) are an important cause of arrhythmogenic cardiomyopathy; however the genetic architecture and genotype-specific risk factors are incompletely understood. We evaluated phenotype, risk factors for ventricular arrhythmias, and underlying genetics of DSPtv cardiomyopathy. METHODS: Individuals with DSPtv and any cardiac phenotype, and their gene-positive family members were included from multiple international centers. Clinical data and family history information were collected. Event-free survival from ventricular arrhythmia was assessed. Variant location was compared between cases and controls, and literature review of reported DSPtv performed. RESULTS: There were 98 probands and 72 family members (mean age at diagnosis 43±8 years, 59% women) with a DSPtv, of which 146 were considered clinically affected. Ventricular arrhythmia (sudden cardiac arrest, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy) occurred in 56 (33%) individuals. DSPtv location and proband status were independent risk factors for ventricular arrhythmia. Further, gene region was important with variants in cases (cohort n=98; Clinvar n=167) more likely to occur in the regions resulting in nonsense mediated decay of both major DSP isoforms, compared with n=124 genome aggregation database control variants (148 [83.6%] versus 29 [16.4%]; P<0.0001). CONCLUSIONS: In the largest series of individuals with DSPtv, we demonstrate that variant location is a novel risk factor for ventricular arrhythmia, can inform variant interpretation, and provide critical insights to allow for precision-based clinical management.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Desmoplaquinas , Femenino , Humanos , Masculino , Arritmias Cardíacas/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Cardiomiopatías/genética , Desmoplaquinas/genética , Factores de RiesgoRESUMEN
KBTBD13 variants cause nemaline myopathy type 6 (NEM6). The majority of NEM6 patients harbors the Dutch founder variant, c.1222C>T, p.Arg408Cys (KBTBD13 p.R408C). Although KBTBD13 is expressed in cardiac muscle, cardiac involvement in NEM6 is unknown. Here, we constructed pedigrees of three families with the KBTBD13 p.R408C variant. In 65 evaluated patients, 12% presented with left ventricle dilatation, 29% with left ventricular ejection fraction< 50%, 8% with atrial fibrillation, 9% with ventricular tachycardia, and 20% with repolarization abnormalities. Five patients received an implantable cardioverter defibrillator, three cases of sudden cardiac death were reported. Linkage analysis confirmed cosegregation of the KBTBD13 p.R408C variant with the cardiac phenotype. Mouse studies revealed that (1) mice harboring the Kbtbd13 p.R408C variant display mild diastolic dysfunction; (2) Kbtbd13-deficient mice have systolic dysfunction. Hence, (1) KBTBD13 is associated with cardiac dysfunction and cardiomyopathy; (2) KBTBD13 should be added to the cardiomyopathy gene panel; (3) NEM6 patients should be referred to the cardiologist.
Asunto(s)
Cardiomiopatías , Proteínas Musculares , Animales , Humanos , Ratones , Arritmias Cardíacas , Cardiomiopatías/genética , Muerte Súbita Cardíaca/etiología , Desfibriladores Implantables , Proteínas Musculares/genética , Volumen Sistólico/fisiología , Función Ventricular IzquierdaRESUMEN
BACKGROUND: A novel risk calculator based on clinical characteristics and noninvasive tests that predicts the onset of clinical sustained ventricular arrhythmias (VA) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been proposed and validated by recent studies. It remains unknown whether programmed ventricular stimulation (PVS) provides additional prognostic value. METHODS: All patients with a definite ARVC diagnosis, no history of sustained VAs at diagnosis, and PVS performed at baseline were extracted from 6 international ARVC registries. The calculator-predicted risk for sustained VA (sustained or implantable cardioverter defibrillator treated ventricular tachycardia [VT] or fibrillation, [aborted] sudden cardiac arrest) was assessed in all patients. Independent and combined performance of the risk calculator and PVS on sustained VA were assessed during a 5-year follow-up period. RESULTS: Two hundred eighty-eight patients (41.0±14.5 years, 55.9% male, right ventricular ejection fraction 42.5±11.1%) were enrolled. At PVS, 137 (47.6%) patients had inducible ventricular tachycardia. During a median of 5.31 [2.89-10.17] years of follow-up, 83 (60.6%) patients with a positive PVS and 37 (24.5%) with a negative PVS experienced sustained VA (P<0.001). Inducible ventricular tachycardia predicted clinical sustained VA during the 5-year follow-up and remained an independent predictor after accounting for the calculator-predicted risk (HR, 2.52 [1.58-4.02]; P<0.001). Compared with ARVC risk calculator predictions in isolation (C-statistic 0.72), addition of PVS inducibility showed improved prediction of VA events (C-statistic 0.75; log-likelihood ratio for nested models, P<0.001). PVS inducibility had a 76% [67-84] sensitivity and 68% [61-74] specificity, corresponding to log-likelihood ratios of 2.3 and 0.36 for inducible (likelihood ratio+) and noninducible (likelihood ratio-) patients, respectively. In patients with a ARVC risk calculator-predicted risk of clinical VA events <25% during 5 years (ie, low/intermediate subgroup), PVS had a 92.6% negative predictive value. CONCLUSIONS: PVS significantly improved risk stratification above and beyond the calculator-predicted risk of VA in a primary prevention cohort of patients with ARVC, mainly for patients considered to be at low and intermediate risk by the clinical risk calculator.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Prevención Primaria , Femenino , Humanos , Masculino , Arritmias Cardíacas/epidemiología , Displasia Ventricular Derecha Arritmogénica/epidemiología , Displasia Ventricular Derecha Arritmogénica/prevención & control , Muerte Súbita Cardíaca/epidemiología , Desfibriladores Implantables , Prevención Primaria/métodos , Medición de Riesgo/métodos , Factores de Riesgo , Volumen Sistólico , Taquicardia Ventricular/epidemiología , Función Ventricular Derecha , Adulto , Persona de Mediana EdadRESUMEN
BACKGROUND: The arrhythmogenic right ventricular cardiomyopathy (ARVC) risk calculator stratifies risk for incident sustained ventricular arrhythmias (VA) at the time of ARVC diagnosis. However, included risk factors change over time, and how well the ARVC risk calculator performs at follow-up is unknown. METHODS: This was a retrospective analysis of patients with definite ARVC and without prior sustained VA. Risk factors for VA including age, nonsustained ventricular tachycardia, premature ventricular complex burden, T-wave inversions on electrocardiogram, cardiac syncope, right ventricular function, therapeutic medication use, and exercise intensity were assessed at the time of 2010 Task Force Criteria based ARVC diagnosis and upon repeat evaluations. Changes in these risk factors were analyzed over 5-year follow-up. The 5-year risk of VA was predicted longitudinally using (1) the baseline ARVC risk calculator prediction, (2) the ARVC risk prediction calculated using updated risk factors, and (3) time-varying Cox regression. Discrimination and calibration were assessed in comparison to observed VA event rates. RESULTS: Four hundred eight patients with ARVC experiencing 132 primary VA events were included. Matched comparison of risk factors at baseline versus at 5 years of follow-up revealed decreased burdens of premature ventricular complexes (-1200/day) and nonsustained ventricular tachycardia (-14%). Presence of significant right ventricular dysfunction and number of T-wave inversions on electrocardiogram were unchanged. Observed risk for VA decreased by 13% by 5 years follow-up. The baseline ARVC risk calculator's ability to predict 5-year VA risk worsened during follow-up (C statistics, 0.83 at diagnosis versus 0.68 at 5 years). Both the updated ARVC risk calculator (C statistics of 0.77) and time-varying Cox regression model (C statistics, 0.77) had strong discrimination. The updated ARVC risk calculator overestimated 5-year VA risk by an average of +6%. CONCLUSIONS: Risk factors for VA in ARVC are dynamic, and overall risk for incident sustained VA decreases during follow-up. Up-to-date risk factor assessment improves VA risk stratification.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Taquicardia Ventricular , Humanos , Displasia Ventricular Derecha Arritmogénica/complicaciones , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Estudios Retrospectivos , Arritmias Cardíacas , Electrocardiografía , Factores de Riesgo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/complicacionesRESUMEN
Genetic variants in gene-encoding proteins involved in cell−cell connecting structures, such as desmosomes and gap junctions, may cause a skin and/or cardiac phenotype, of which the combination is called cardiocutaneous syndrome. The cardiac phenotype is characterized by cardiomyopathy and/or arrhythmias, while the skin particularly displays phenotypes such as keratoderma, hair abnormalities and skin fragility. The reported variants associated with cardiocutaneous syndrome, in genes DSP, JUP, DSC2, KLHL24, GJA1, are classified by interpretation guidelines from the American College of Medical Genetics and Genomics. The genotype−phenotype correlation, however, remains poorly understood. By providing an overview of variants that are assessed for a functional protein pathology, we show that this number (n = 115) is low compared to the number of variants that are assessed by in silico algorithms (>5000). As expected, there is a mismatch between the prediction of variant pathogenicity and the prediction of the functional effect compared to the real functional evidence. Aiding to improve genotype−phenotype correlations, we separate variants into 'protein reducing' or 'altered protein' variants and provide general conclusions about the skin and heart phenotype involved. We conclude by stipulating that adequate prognoses can only be given, and targeted therapies can only be designed, upon full knowledge of the protein pathology through functional investigation.
Asunto(s)
Cardiomiopatías , Anomalías Cutáneas , Cardiomiopatías/genética , Cardiomiopatías/terapia , Estudios de Asociación Genética , Humanos , Mutación , FenotipoRESUMEN
Marfan syndrome (MFS) is a connective tissue disorder affecting the cardiovascular, ocular, and skeletal system, which may be accompanied by psychological features. This study aimed to determine the prevalence of fatigue, anxiety, and symptoms of depression in MFS patients, and to assess the degree to which sociodemographic and clinical variables are associated with fatigue and psychological aspects. The prevalence of fatigue, anxiety, and symptoms of depression were assessed in two cohorts of MFS patients and compared with healthy controls. The checklist individual strength (CIS), and hospital anxiety and depression scale (HADS) questionnaires were utilized. Medical status was assessed (family history of MFS, aortic root dilatation >40 mm, previous aortic surgery, aortic dissection, chronic pain, skeletal involvement, and scoliosis). Severe fatigue was experienced by 37% of the total MFS cohort (n = 155). MFS patients scored significantly higher on the CIS questionnaire, concerning severe fatigue, as compared with the general Dutch population (p < 0.0001). There were no differences in HADS anxiety or depression scores. In older MFS patients, with a more severe cardiovascular phenotype, chronic pain, and a higher unemployment rate, significantly more symptoms of depression were observed, when compared with the general population (p = 0.027) or compared with younger MFS patients (p = 0.026). Multivariate analysis, showed that anxiety was associated with chronic pain (p = 0.022) and symptoms of depression with unemployment (p = 0.024). MFS patients report significantly more severe fatigue as compared with the general population. Since the cause of fatigue is unclear, more research may be needed. Psychological intervention, for example, cognitive behavioral therapy, may contribute to a reduction in psychological symptoms.
Asunto(s)
Dolor Crónico , Síndrome de Marfan , Ansiedad/epidemiología , Ansiedad/etiología , Ansiedad/psicología , Estudios Transversales , Depresión/epidemiología , Depresión/etiología , Depresión/psicología , Fatiga/complicaciones , Fatiga/etiología , Humanos , Síndrome de Marfan/complicaciones , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiologíaRESUMEN
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by risk of malignant ventricular arrhythmia (VA). ARVC is diagnosed using an array of clinical tests in the consensus-based Task Force Criteria (TFC), one of which is genetic testing. OBJECTIVE: The purpose of this study was to investigate the value of genetic testing in diagnosing ARVC and its relation to the occurrence of first malignant VA. METHODS: A multicenter cohort of patients with ARVC was scored using the revised 2010 TFC with and without genetic criterion, analyzing any resulting loss or delay of diagnosis. Malignant VA was defined as sustained VA (≥30-second duration at ≥100 beats/min or requiring intervention). RESULTS: We included 402 subjects (221 [55%] male; 216 [54%] proband; 40 [27-51] years old at presentation) who were diagnosed with definite ARVC. A total of 232 subjects (58%) fulfilled genetic testing criteria. Removing the genetic criterion caused loss of diagnosis in 18 patients (4%) (11 of 216 probands [5%] and 7 of 186 relatives [4%]) and delay of diagnosis by ≥30 days in 22 patients (5%) (21 of 216 probands [10%] and 1 of 186 relative [0.5%]). A first malignant VA occurred in no patients who lost diagnosis and in 3 patients (3 of 216 probands [1%] and no relatives) during their diagnosis delay, none fatal. Time-to-event analysis showed no significant difference in time from diagnosis to malignant VA between pathogenic variant carriers and noncarriers. CONCLUSION: Disregarding the genetic criterion of the TFC caused loss or delay of diagnosis in 10% of patients with ARVC (40 of 402). Malignant VA occurred in 1% of cases with lost or delayed diagnosis (3 of 402), none fatal.
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Adulto , Arritmias Cardíacas/genética , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/genética , Electrocardiografía , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Medición de RiesgoRESUMEN
AIMS: Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVC) is characterized by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). We aimed to develop a model for individualized prediction of incident VA/SCD in ARVC patients. METHODS AND RESULTS: Five hundred and twenty-eight patients with a definite diagnosis and no history of sustained VAs/SCD at baseline, aged 38.2 ± 15.5 years, 44.7% male, were enrolled from five registries in North America and Europe. Over 4.83 (interquartile range 2.44-9.33) years of follow-up, 146 (27.7%) experienced sustained VA, defined as SCD, aborted SCD, sustained ventricular tachycardia, or appropriate implantable cardioverter-defibrillator (ICD) therapy. A prediction model estimating annual VA risk was developed using Cox regression with internal validation. Eight potential predictors were pre-specified: age, sex, cardiac syncope in the prior 6 months, non-sustained ventricular tachycardia, number of premature ventricular complexes in 24 h, number of leads with T-wave inversion, and right and left ventricular ejection fractions (LVEFs). All except LVEF were retained in the final model. The model accurately distinguished patients with and without events, with an optimism-corrected C-index of 0.77 [95% confidence interval (CI) 0.73-0.81] and minimal over-optimism [calibration slope of 0.93 (95% CI 0.92-0.95)]. By decision curve analysis, the clinical benefit of the model was superior to a current consensus-based ICD placement algorithm with a 20.3% reduction of ICD placements with the same proportion of protected patients (P < 0.001). CONCLUSION: Using the largest cohort of patients with ARVC and no prior VA, a prediction model using readily available clinical parameters was devised to estimate VA risk and guide decisions regarding primary prevention ICDs (www.arvcrisk.com).
Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Desfibriladores Implantables , Taquicardia Ventricular , Arritmias Cardíacas/etiología , Arritmias Cardíacas/terapia , Displasia Ventricular Derecha Arritmogénica/complicaciones , Displasia Ventricular Derecha Arritmogénica/diagnóstico , Displasia Ventricular Derecha Arritmogénica/terapia , Muerte Súbita Cardíaca/epidemiología , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/prevención & control , Femenino , Humanos , Lactante , Masculino , Factores de Riesgo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/terapiaRESUMEN
Desmoplakin (DP) is an important component of desmosomes, essential in cell-cell connecting structures in stress-bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC-derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense-mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose-dependent disease severity.
Asunto(s)
Cardiomiopatías , Queratodermia Palmoplantar , Cardiomiopatías/genética , Cardiomiopatías/patología , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Humanos , Queratodermia Palmoplantar/genética , ARN , Índice de Severidad de la EnfermedadRESUMEN
OBJECTIVES: The goal of this study was to describe characteristics, cascade screening results, and predictors of adverse outcome in pediatric-onset arrhythmogenic right ventricular cardiomyopathy (ARVC). BACKGROUND: Although ARVC is increasingly recognized in children, pediatric ARVC cohorts remain underrepresented in the literature. METHODS: This study included 12 probands with pediatric-onset ARVC (aged <18 years at diagnosis) and 68 pediatric relatives (aged <18 years at first evaluation) referred for cascade screening. ARVC diagnosis was based on 2010 Task Force Criteria. Clinical presentation, diagnostic testing, and outcomes (sustained ventricular tachycardia [VT]; heart failure) were ascertained. Predictors of adverse outcome were determined by using univariable logistic regression. RESULTS: Pediatric-onset ARVC was diagnosed in 12 probands and 12 (18%) relatives at a median age of 16.6 years (interquartile range: 13.8-17.4 years), whereas 12 (18%) relatives reached ARVC diagnosis as adults (median age, 22.0 years; interquartile range: 20.0-26.7 years). Sudden cardiac death/arrest was the first disease manifestation in 3 (25%) probands and 3 (4%) relatives. In patients without ARVC diagnosis at presentation (n = 61), electrocardiogram and Holter monitoring abnormalities occurred before development of imaging Task Force Criteria (7.3 ± 5.0 years vs 8.4 ± 5.0 years). Clinical course was characterized by sustained VT (91%) and heart failure (36%) in probands, which were rare in relatives (2% and 0%, respectively). Male sex (P < 0.01), T-wave inversion V1-V3 (P < 0.01), premature ventricular complexes/runs (P ≤ 0.01), and decrease in biventricular ejection fraction (P ≤ 0.01) were associated with VT occurrence. CONCLUSIONS: Pediatric ARVC carries high arrhythmic risk, especially in probands. Disease progression is particularly observed on electrocardiogram or Holter monitoring. Arrhythmic events are associated with male sex, T-wave inversions, premature ventricular complexes/runs, and reduced biventricular ejection fraction.