RESUMEN
We report the synthesis of a novel class of metal-complexing peptide-based polymers, which we name HyperMAPs (Hyper-loaded MetAl-complexed Polymers). The controlled solid-phase synthesis of HyperMAPs' scaffold peptide provides our polymer with a well-defined molecular structure that allows for an accurate on-design assembly of a wide variety of metals. The peptide-scaffold features a handle for direct conjugation to antibodies or any other biomolecules by means of a thiol-maleimide-click or aldehyde-oxime reaction, a fluorogenic moiety for biomolecule conjugation tracking, and a well-defined number of functional groups for direct incorporation of metal-chelator complexes. Since metal-chelator complexes are prepared in a separate reaction prior to incorporation to the peptide scaffold, polymers can be designed to contain specific ratios of metal isotopes, providing each polymer with a unique CyTOF spectral fingerprint. We demonstrate the complexing of 21 different metals using two different chelators and provide evidence of the application of HyperMAPs on a 13 parameter CyTOF panel and compare its performance to monoisotopic metal-conjugated antibodies.
Asunto(s)
Complejos de Coordinación , Maleimidas , Polímeros , Polímeros/química , Compuestos de Sulfhidrilo/química , Péptidos/química , Metales/química , Quelantes/química , AnticuerposRESUMEN
Background: Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods: High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results: Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion: High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.
Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Leucocitos Mononucleares/patología , Linfocitos T CD4-Positivos , Inmunoterapia/métodos , Dexametasona/uso terapéuticoRESUMEN
Background: Community-acquired pneumonia (CAP) represents a major health burden worldwide. Dysregulation of the immune response plays an important role in adverse outcomes in patients with CAP. Methods: We analyzed peripheral blood mononuclear cells by 36-color spectral flow cytometry in adult patients hospitalized for CAP (n=40), matched control subjects (n=31), and patients hospitalized for COVID-19 (n=35). Results: We identified 86 immune cell metaclusters, 19 of which (22.1%) were differentially abundant in patients with CAP versus matched controls. The most notable differences involved classical monocyte metaclusters, which were more abundant in CAP and displayed phenotypic alterations reminiscent of immunosuppression, increased susceptibility to apoptosis, and enhanced expression of chemokine receptors. Expression profiles on classical monocytes, driven by CCR7 and CXCR5, divided patients with CAP into two clusters with a distinct inflammatory response and disease course. The peripheral immune response in patients with CAP was highly similar to that in patients with COVID-19, but increased CCR7 expression on classical monocytes was only present in CAP. Conclusion: CAP is associated with profound cellular changes in blood that mainly relate to classical monocytes and largely overlap with the immune response detected in COVID-19.
Asunto(s)
COVID-19 , Infecciones Comunitarias Adquiridas , Neumonía , Adulto , Humanos , Leucocitos Mononucleares , Receptores CCR7 , InmunidadRESUMEN
Inhibitors of the PD-1-PD-L1 axis have been approved as therapy for many human cancers. In spite of the evidence for their widespread clinical activity, little is known about the immunological alterations that occur in human cancer tissue after PD-1 blockade. We developed and employed a patient-derived tumor fragment platform to dissect the early immunological response of human tumor tissue to ex vivo PD-1 blockade. We observed that the capacity of immune cells to be reactivated ex vivo was predictive of clinical response, and perturbation analyses identified tumor-resident T cells as a key component of this immunological response. In addition, through combined analysis of baseline properties and immune response capacity, we identified a new subgroup of infiltrated tumors that lacks the capacity to respond to PD-1 blockade. Finally, the baseline presence of tertiary lymphoid structures and their components correlated with the capacity of cancers to undergo intratumoral immune cell reactivation.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Linfocitos T CD8-positivos/citología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Citocinas/análisis , Humanos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/citología , Neoplasias/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Tumor immune cell compositions play a major role in response to immunotherapy, but the heterogeneity and dynamics of immune infiltrates in human cancer lesions remain poorly characterized. Here, we identify conserved intratumoral CD4 and CD8 T cell behaviors in scRNA-seq data from 25 melanoma patients. We discover a large population of CD8 T cells showing continuous progression from an early effector "transitional" into a dysfunctional T cell state. CD8 T cells that express a complete cytotoxic gene set are rare, and TCR sharing data suggest their independence from the transitional and dysfunctional cell states. Notably, we demonstrate that dysfunctional T cells are the major intratumoral proliferating immune cell compartment and that the intensity of the dysfunctional signature is associated with tumor reactivity. Our data demonstrate that CD8 T cells previously defined as exhausted are in fact a highly proliferating, clonal, and dynamically differentiating cell population within the human tumor microenvironment.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Melanoma/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunologíaRESUMEN
Adjuvant ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) both improve relapse-free survival of stage III melanoma patients1,2. In stage IV disease, the combination of ipilimumab + nivolumab is superior to ipilimumab alone and also appears to be more effective than nivolumab monotherapy3. Preclinical work suggests that neoadjuvant application of checkpoint inhibitors may be superior to adjuvant therapy4. To address this question and to test feasibility, 20 patients with palpable stage III melanoma were 1:1 randomized to receive ipilimumab 3 mg kg-1 and nivolumab 1 mg kg-1, as either four courses after surgery (adjuvant arm) or two courses before surgery and two courses postsurgery (neoadjuvant arm). Neoadjuvant therapy was feasible, with all patients undergoing surgery at the preplanned time point. However in both arms, 9/10 patients experienced one or more grade 3/4 adverse events. Pathological responses were achieved in 7/9 (78%) patients treated in the neoadjuvant arm. None of these patients have relapsed so far (median follow-up, 25.6 months). We found that neoadjuvant ipilimumab + nivolumab expand more tumor-resident T cell clones than adjuvant application. While neoadjuvant therapy appears promising, with the current regimen it induced high toxicity rates; therefore, it needs further investigation to preserve efficacy but reduce toxicity.
Asunto(s)
Quimioterapia Adyuvante/métodos , Ipilimumab/administración & dosificación , Melanoma/tratamiento farmacológico , Nivolumab/administración & dosificación , Adulto , Anciano , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/inmunología , Quimioterapia Adyuvante/efectos adversos , Supervivencia sin Enfermedad , Humanos , Ipilimumab/efectos adversos , Masculino , Melanoma/patología , Melanoma/cirugía , Persona de Mediana Edad , Terapia Neoadyuvante/efectos adversos , Estadificación de Neoplasias , Nivolumab/efectos adversosRESUMEN
The development of peptide loaded major histocompatibility complexes (MHC) conjugated to fluorochromes by Davis and colleagues 20 years ago provided a highly useful tool to identify and characterize antigen-specific T cells. In this chapter we describe a multiplexing strategy that allows detection of high numbers of T cell responses in parallel.