Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mycologia ; 115(4): 484-498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37289484

RESUMEN

Bats can be affected by fungal pathogens such as Pseudogymnoascus destructans, the causative agent of the white-nose syndrome. Their body surface can also be colonized by fungal commensals or carry transient fungal species and participate in their dispersal. In this study, 114 bat specimens belonging to seven species were sampled from various locations in northern Belgium. Culture-based methods revealed an important mycological diversity, with a total of 209 different taxa out of the 418 isolates. Overall, a mean of 3.7 taxa per bat was recorded, but significant differences were observed between sampling sites and seasons. The mycobiomes were dominated by cosmopolitan and plant-associated species, in particular from the genera Cladosporium, Penicillium, and Aspergillus. Other species known to be related to bats or their environment, such as Apiotrichum otae, were also retrieved. Sampling of hibernacula indicated that diverse fungal species can inhabit these sites, including a yet undescribed Pseudogymnoascus species, distinct from Ps. destructans, namely, Ps. cavicola.


Asunto(s)
Quirópteros , Micosis , Penicillium , Animales , Micosis/microbiología , Quirópteros/microbiología , Bélgica , Biodiversidad
2.
Microorganisms ; 11(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37374888

RESUMEN

Anopheles plumbeus, a day-active mosquito known to feed aggressively on humans, was reported as a nuisance species near an abandoned pigsty in Belgium. Since Japanese encephalitis virus (JEV) is an emerging zoonotic flavivirus which uses pigs as amplification hosts, we investigated (1) whether An. plumbeus would feed on pigs and (2) its vector competence for JEV, to investigate whether this species could be a potential vector. Three- to seven-day-old F0-generation adult mosquitoes, emerged from field-collected larvae, were fed on a JEV genotype 3 Nakayama strain spiked blood meal. Blood-fed mosquitoes were subsequently incubated for 14 days at two temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient. Our results show that An. plumbeus is a competent vector for JEV at the 25 °C condition and this with an infection rate of 34.1%, a dissemination rate of 67.7% and a transmission rate of 14.3%. The vector competence showed to be influenced by temperature, with a significantly lower dissemination rate (16.7%) and no transmission when implementing the temperature gradient. Moreover, we demonstrated that An. plumbeus readily feeds on pigs when the opportunity occurs. Therefore, our results suggest that Belgian An. plumbeus mosquitoes may play an important role in the transmission of JEV upon an introduction into our region if temperatures increase with climate change.

3.
Viruses ; 15(3)2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36992473

RESUMEN

Japanese encephalitis virus (JEV), a zoonotic mosquito-borne Flavivirus, can be considered an emerging infectious disease. Therefore, vector competence studies with indigenous mosquitoes from regions where JEV is not yet endemic are of great importance. In our study, we compared the vector competence of Culex pipiens mosquitoes emerged from Belgian field-caught larvae under two different temperature conditions: a constant 25 °C and a 25/15 °C day/night temperature gradient representing typical summer temperatures in Belgium. Three- to seven-day-old F0-generation mosquitoes were fed on a JEV genotype 3 Nakayama strain spiked blood-meal and incubated for 14 days at the two aforementioned temperature conditions. Similar infection rates of 36.8% and 35.2% were found in both conditions. The observed dissemination rate in the gradient condition was, however, significantly lower compared to the constant temperature condition (8% versus 53.6%, respectively). JEV was detected by RT-qPCR in the saliva of 13.3% of dissemination positive mosquitoes in the 25 °C condition, and this transmission was confirmed by virus isolation in 1 out of 2 RT-qPCR positive samples. No JEV transmission to saliva was detected in the gradient condition. These results suggest that JEV transmission by Culex pipiens mosquitoes upon an accidental introduction in our region is unlikely under current climatic conditions. This could change in the future when temperatures increase due to climate change.


Asunto(s)
Culex , Culicidae , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Virus de la Encefalitis Japonesa (Especie)/genética , Bélgica , Temperatura , Mosquitos Vectores
4.
Pathogens ; 11(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35335641

RESUMEN

Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and a major cause of human viral encephalitis in Asia. We provide an overview of the knowledge on vector competence, vector capacity, and immunity of mosquitoes in relation to JEV. JEV has so far been detected in more than 30 mosquito species. This does not necessarily mean that these species contribute to JEV transmission under field conditions. Therefore, vector capacity, which considers vector competence, as well as environmental, behavioral, cellular, and biochemical variables, needs to be taken into account. Currently, 17 species can be considered as confirmed vectors for JEV and 10 other species as potential vectors. Culex tritaeniorhynchus and Culex annulirostris are considered primary JEV vectors in endemic regions. Culex pipiens and Aedes japonicus could be considered as potentially important vectors in the case of JEV introduction in new regions. Vector competence is determined by various factors, including vector immunity. The available knowledge on physical and physiological barriers, molecular pathways, antimicrobial peptides, and microbiome is discussed in detail. This review highlights that much remains to be studied about vector immunity against JEV in order to identify novel strategies to reduce JEV transmission by mosquitoes.

5.
Parasit Vectors ; 14(1): 300, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090481

RESUMEN

BACKGROUND: Culicoides obsoletus (s.l.) is the most abundant Culicoides species in northern Europe and an important vector of bluetongue virus and Schmallenberg virus. Nevertheless, information on its subadult life stages remains scarce and no laboratory-reared colony exists. METHODS: C. obsoletus (s.l.) adults were collected in Belgium and transferred to the laboratory in an attempt to establish a laboratory-reared colony. C. obsoletus (s.l.) were reared from eggs to adults at different temperatures (28 °C, 24 °C, 20/16 °C) and under different food regimes. RESULTS: The most suitable temperature for rearing seemed to be 24 °C for most developmental parameters, but resulted in a biased 3:1 male/female sex ratio. The latter could be optimized to a 1:1 sex ratio when a 20/16 °C day/night temperature gradient was applied, but rearing at these low temperature conditions resulted in significantly lower egg hatching and pupation rates and a longer subadult development time. Independent of the rearing temperature, adding dung as an additional food source during larval development resulted in a significantly higher adult emergence rate and a decrease in subadult development time. Furthermore, blood-feeding rates of field-collected C. obsoletus (s.l.) were compared for different blood sources and feeding systems. The overall blood-feeding success was low and only successful with cotton pledgets (2.7% blood-fed midges) and through a membrane system with chicken skin (3.5% blood-fed midges). Higher feeding rates were obtained on cattle blood compared to sheep blood. CONCLUSIONS: These results will help us to determine the necessary conditions to rear a viable laboratory colony of this important vector species, although further optimization is still required.


Asunto(s)
Ceratopogonidae/crecimiento & desarrollo , Ceratopogonidae/fisiología , Conducta Alimentaria , Alimentos , Insectos Vectores/crecimiento & desarrollo , Insectos Vectores/fisiología , Temperatura , Animales , Femenino , Laboratorios , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA