Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Antioxidants (Basel) ; 13(7)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-39061829

RESUMEN

Researchers have studied the effects of exercise on serum methyl-arginine and vitamin D metabolites; however, the effects of exercise combined with antioxidants are not well documented. Since oxidative stress affects the metabolism of vitamin D and methyl-arginine, we hypothesised that the antioxidant coenzyme Q10 (CoQ10) might modulate exercise-induced changes. A group of twenty-eight healthy men participated in this study and were divided into two groups: an experimental group and a control group. The exercise test was performed until exhaustion, with gradually increasing intensity, before and after the 21-day CoQ10 supplementation. Blood samples were collected before, immediately after, and 3 and 24 h after exercise. CoQ10, vitamin D metabolites, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, methylarginine, dimethylamine, arginine, citrulline, and ornithine were analysed in serum samples. CoQ10 supplementation caused a 2.76-fold increase in the concentration of serum CoQ10. Conversely, the 25(OH)D3 concentration increased after exercise only in the placebo group. ADMA increased after exercise before supplementation, but a decrease was observed in the CoQ10 supplementation group 24 h after exercise. In conclusion, our data indicate that CoQ10 supplementation modifies the effects of exercise on vitamin D and methyl-arginine metabolism, suggesting its beneficial effects. These findings contribute to the understanding of how antioxidants like CoQ10 can modulate biochemical responses to exercise, potentially offering new insights for enhancing athletic performance and recovery.

2.
Front Endocrinol (Lausanne) ; 15: 1355916, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665259

RESUMEN

Introduction: 24-Hydroxylase, encoded by the CYP24A1 gene, is a crucial enzyme involved in the catabolism of vitamin D. Loss-of-function mutations in CYP24A1 result in PTH-independent hypercalcaemia with high levels of 1,25(OH)2D3. The variety of clinical manifestations depends on age, and underlying genetic predisposition mutations can lead to fatal infantile hypercalcaemia among neonates, whereas adult symptoms are usually mild. Aim of the study: We report a rare case of an adult with primary hyperparathyroidism and loss-of-function mutations in the CYP24A1 gene and a review of similar cases. Case presentation: We report the case of a 58-year-old woman diagnosed initially with primary hyperparathyroidism. Preoperatively, the suspected mass adjoining the upper pole of the left lobe of the thyroid gland was found via ultrasonography and confirmed by 99mTc scintigraphy and biopsy as the parathyroid gland. The patient underwent parathyroidectomy (a histopathology report revealed parathyroid adenoma), which led to normocalcaemia. After 10 months, vitamin D supplementation was introduced due to deficiency, and the calcium level remained within the reference range. Two years later, biochemical tests showed recurrence of hypercalcaemia with suppressed parathyroid hormone levels and elevated 1,25(OH)2D3 concentrations. Further investigation excluded the most common causes of PTH-independent hypercalcaemia, such as granulomatous disease, malignancy, and vitamin D intoxication. Subsequently, vitamin D metabolites were measured using LC-MS/MS, which revealed high levels of 25(OH)D3, low levels of 24,25(OH)2D3 and elevated 25(OH)2D3/24,25(OH)2D3 ratios, suggesting a defect in vitamin D catabolism. Molecular analysis of the CYP24A1 gene using the NGS technique revealed two pathogenic variants: p.(Arg396Trp) and p.(Glu143del) (rs114368325 and rs777676129, respectively). Conclusions: The diagnostic process for hypercalcaemia becomes complicated when multiple causes of hypercalcaemia coexist. The measurement of vitamin D metabolites using LC-MS/MS may help to identify carriers of CYP24A1 mutations. Subsequent molecular testing may contribute to establishing the exact frequency of pathogenic variants of the CYP24A1 gene and introducing personalized treatment.


Asunto(s)
Adenoma , Hipercalcemia , Neoplasias de las Paratiroides , Vitamina D3 24-Hidroxilasa , Humanos , Hipercalcemia/genética , Femenino , Persona de Mediana Edad , Vitamina D3 24-Hidroxilasa/genética , Neoplasias de las Paratiroides/genética , Neoplasias de las Paratiroides/complicaciones , Neoplasias de las Paratiroides/cirugía , Neoplasias de las Paratiroides/patología , Adenoma/genética , Adenoma/complicaciones , Adenoma/patología , Mutación , Paratiroidectomía
3.
J Endocrinol Invest ; 47(9): 2305-2312, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38329607

RESUMEN

PURPOSE: The screening test to suspect infantile hypercalcemia-1 (HCINF1) is the measure of 25(OH)D3/24,25(OH)2D3 ratio at mass spectroscopy (MS). When the ratio is > 80, the gold standard for the diagnosis is genetic analysis. Given its limited availability, MS may not represent a screening test and most cases of HCINF1 remain undiagnosed. Aim of the study is to identify cut-offs of serum calcium and PTH useful to suspect patients with HCINF1. METHODS: We compared the levels of total serum calcium and PTH of 6 patients with HCINF1 harboring biallelic CYP24A1 pathogenic variants with 3 different control groups: (1) 12 subjects wild type for CYP24A1; (2) 12 subjects matched for age and sex; (3) 12 subjects matched for vitamin D levels. We validated the cut-offs, testing the number of adult patients affected by HCINF1 reported in the literature that could be identified using these cut-offs. RESULTS: A serum calcium level > 9.6 mg/dL showed the highest sensitivity (100%) and specificity (91%) in the comparison between homozygous and wild-type subjects. A serum PTH index < 0.315 showed the highest sensitivity (100%) and specificity (83.3%). A serum calcium level > 9.6 mg/dL was able to identify all adult HCINF1 patients whereas a PTH ratio < 0.315 identified 89.8% of the cases. Superimposable results were obtained using the other control groups. CONCLUSION: Patients with serum calcium levels higher than 9.6 mg/dL and a PTH index lower than 0.315 are likely to be affected by HCINF1. Their diagnosis may be confirmed using MS and genetic analysis.


Asunto(s)
Calcio , Hipercalcemia , Vitamina D3 24-Hidroxilasa , Humanos , Hipercalcemia/diagnóstico , Hipercalcemia/sangre , Hipercalcemia/genética , Femenino , Masculino , Calcio/sangre , Vitamina D3 24-Hidroxilasa/genética , Adulto , Lactante , Hormona Paratiroidea/sangre , Estudios de Casos y Controles , Mutación , Vitamina D/sangre , Vitamina D/análogos & derivados , Niño , Biomarcadores/sangre , Preescolar
5.
Front Physiol ; 13: 909086, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874521

RESUMEN

The potential effects of vitamin D in athletes have received considerable attention in the literature. However, little is known about vitamin D metabolites and their association with physical performance in athletes. Therefore, the aim of our study was to determine the relationship between metabolites of vitamin D, vitamin D binding protein (VDBP), free, bioavailable 25-(OH)D, and physical fitness tests in athletes. A total of 40 indoor and outdoor players (16 judoists and 24 football players) participated in the study. Vitamin D metabolites (25-(OH)D, 24,25-(OH)2D3, 3-epi-25-(OH)D3, and 1,25-(OH)2D) were assessed using LM-MS/MS. Free 25-(OH)D concentration was evaluated by calculation using serum albumin and VDBP levels. Athletic performance was assessed using handgrip and vertical jump. Our study showed a significant correlation between vitamin D metabolites and handgrip strength and vertical jump variables in indoor players. It demonstrated a significant association between 3-epi-25-(OH)D3 and vertical jump parameters in outdoor players. The results of our study showed relationship between free, bioavailable 25-(OH)D, and vertical jump variables in indoor players. In conclusion, we provide novel information on the vitamin D metabolites and athletic performance in athletes. Based on the results of our study, we concluded that vitamin D metabolites might be involved in skeletal muscle function in relation to athletic performance.

6.
Nutrients ; 14(10)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35631139

RESUMEN

The effect of metabolically active bariatric surgery treatment on lipid metabolism is inconclusive. The authors of this study presume that initial vitamin D status may play a regulating role in influencing the beneficial post-effects of bariatric surgery, especially the lipid profile. The biochemical data obtained from 24 patients who had undergone laparoscopic one-anastomosis gastric bypass (OAGB) at baseline, 3 months before the surgery, at the time of surgery, and 6 months later, demonstrate that vitamin D status influenced the postoperative lipid profile. The baseline established the partition line which divided patients into two groups according to the stated calcidiol initial concentration level of 32 ng/mL. The data shows that OAGB induces a decrease in TG and hsCRP while increasing HDL. Conversely, in patients whose 25(OH)D3 was below 32 ng/mL TC significantly increased while those above this concentration remained in the normal physiological range. The changes induced by OAGB in TG, glucose, and hsCRP were similar in both groups. Unexpectedly, the surgery did not affect vitamin D metabolites. In conclusion, the results of the study suggest that a higher concentration of serum 25(OH)D3 may enhance the protective effects of OAGB.


Asunto(s)
Derivación Gástrica , Vitamina D , Proteína C-Reactiva , Colesterol , Humanos , Lípidos , Vitaminas
7.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326710

RESUMEN

There are limited and discrepant data on prostate cancer (PCa) and vitamin D. We investigated changes in three vitamin D3 metabolites in PCa patients after prostatectomy with zoledronic acid (ZA) treatment regarding their metastasis statuses over four years. In 32 patients from the ZEUS trial, 25(OH)D3, 24,25(OH)2D3, and 1,25(OH)2D3 were measured with liquid chromatography coupled with tandem mass spectrometry at four time points. All the patients received daily calcium and vitamin D3. Bone metastases were detected in 7 of the 17 ZA-treated patients and in 5 of the 15 controls (without ZA), without differences between the groups (p = 0.725). While 25(OH)D3 and 24,25(OH)2D3 increased significantly after the study's start, with following constant values, the 1,25(OH)2D3 concentrations remained unchanged. ZA treatment did not change the levels of the three metabolites. 25(OH)D3 and 24,25(OH)2D3 were not associated with the development of bone metastases. In contrast, 1,25(OH)2D3 was also higher in patients with bone metastasis before the study's start. Thus, in high-risk PCa patients after prostatectomy, 25(OH)D3, 24,25(OH)2D3, and 1,25(OH)2D3 were not affected by supportive ZA treatment or by the development of metastasis over four years, with the exception of 1,25(OH)2D3, which was constantly higher in metastatic patients. There might be potential prognostic value if the results can be confirmed.

8.
JBMR Plus ; 5(12): e10581, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950834

RESUMEN

The assay of vitamin D that began in the 1970s with the quantification of one or two metabolites, 25-OH-D or 1,25-(OH)2D, continues to evolve with the emergence of liquid chromatography tandem mass spectrometry (LC-MS/MS) as the technique of choice. This highly accurate, specific, and sensitive technique has been adopted by many fields of endocrinology for the measurement of multiple other components of the metabolome, and its advantage is that it not only makes it feasible to assay 25-OH-D or 1,25-(OH)2D but also other circulating vitamin D metabolites in the vitamin D metabolome. In the process, this broadens the spectrum of vitamin D metabolites, which the clinician can use to evaluate the many complex genetic and acquired diseases of calcium and phosphate homeostasis involving vitamin D. Several examples are provided in this review that additional metabolites (eg, 24,25-(OH)2D3, 25-OH-D3-26,23-lactone, and 1,24,25-(OH)3D3) or their ratios with the main forms offer valuable additional diagnostic information. This approach illustrates that biomarkers of disease can also include metabolites devoid of biological activity. Herein, a case is presented that the decision to switch to a LC-MS/MS technology permits the measurement of a larger number of vitamin D metabolites simultaneously and does not need to lead to a dramatic increase in cost or complexity because the technique uses a highly versatile tandem mass spectrometer with plenty of reserve analytical capacity. Physicians are encouraged to consider adding this rapidly evolving technique aimed at evaluating the wider vitamin D metabolome toward streamlining their approach to calcium- and phosphate-related disease states. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

9.
Nutrients ; 13(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34959945

RESUMEN

The COVID-19 pandemic and subsequent self-isolation exacerbated the problem of insufficient amounts of physical activity and its consequences. At the same time, this revealed the advantage of vitamin D. Thus, there was a need to verify the effects of those forms of training that can be performed independently. In this study, we examined the effects of Nordic walking (NW) and high intensity interval training (HIIT) with regard to the impact of the metabolite vitamin D. We assigned 32 overweight adults (age = 61 ± 12 years) to one of two training groups: NW = 18 and HIIT = 14. Body composition assessment and blood sample collection were conducted before starting the training programs and a day after their completion. NW training induced a significant decrease in myostatin (p = 0.05) concentration; however, the range was dependent on the baseline concentrations of vitamin D metabolites. This drop was accompanied by a significant negative correlation with the decorin concentration. Unexpectedly, NW caused a decrement in both forms of osteocalcin: undercarboxylated (Glu-OC) and carboxylated-type (Gla-OC). The scope of Glu-OC changes was dependent on a baseline concentration of 25(OH)D2 (r = -0.60, p = 0.01). In contrast, the HIIT protocol did not induce any changes. Overall results revealed that NW diminished the myostatin concentration and that this effect is more pronounced among adults with a sufficient concentration of vitamin D metabolites.


Asunto(s)
COVID-19 , Entrenamiento de Intervalos de Alta Intensidad , Miostatina/sangre , Caminata Nórdica , Sobrepeso , SARS-CoV-2/metabolismo , Vitamina D/sangre , Anciano , COVID-19/sangre , COVID-19/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sobrepeso/sangre , Sobrepeso/fisiopatología
10.
Nutrients ; 13(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34836003

RESUMEN

The most representative indicator of vitamin D status in clinical practice is 25(OH)D3, but new biomarkers could improve the assessment of vitamin D status and metabolism. The objective of this study is to investigate the association of serum vitamin D metabolites and vitamin D metabolite ratios (VMRs) with potentially influential factors in premenopausal women. This is a cross-sectional study based on 1422 women, aged 39-50, recruited from a Madrid Medical Diagnostic Center. Participants answered an epidemiological and a food frequency questionnaire. Serum vitamin D metabolites were determined using an SPE-LC-MS/MS platform. The association between participant's characteristics, vitamin D metabolites, and VMRs was quantified by multiple linear regression models. Mean 25(OH)D3 concentration was 49.2 + 18.9 nmol/L, with greater deficits among obese, nulliparous, dark-skinned women, and with less sun exposure. A lower R2 ratio (1,25(OH)2D3/25(OH)D3) and a higher R4 (24,25(OH)2D3/1,25(OH)2D3) were observed in nulliparous women, with high sun exposure, and those with low caloric intake or high consumption of calcium, vitamin D supplements, or alcohol. Nulliparous women had lower R1 (25(OH)D3/Vit D3) and R3 (24,25(OH)2D3/25(OH)D3), and older women showed lower R3 and R4. Vitamin D status modified the association of the VMRs with seasons. VMRs can be complementary indicators of vitamin D status and its endogenous metabolism, and reveal the influence of certain individual characteristics on the expression of hydroxylase enzymes.


Asunto(s)
Metaboloma , Premenopausia/sangre , Vitamina D/sangre , Adulto , Femenino , Humanos , Persona de Mediana Edad
11.
Nutrients ; 13(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201027

RESUMEN

BACKGROUND: Vitamin D plays pleiotropic roles in the body and hence, changes in its metabolism and distribution during starvation could play an important role in the adaptive response to famine. We aimed to identify the responses of some vitamin D metabolites to 8 d of fasting and exercise. METHODS: A repeated-measures design was implemented, in which 14 male volunteers fasted for 8 d and performed an exercise test before and after fasting. Serum samples were collected on day 1 after night fasting and after 8 d of complete food restriction, before and 1 h and 3 h after exercise. RESULTS: After 8 d of fasting, compared with baseline values, serum 24,25(OH)2D3 and 3-epi-25(OH)D3 levels significantly increased; those of 25(OH)D3 and 1,25(OH)2D3 were unaffected; and those of 25(OH)D2 decreased. Exercise on the first day of fasting induced an increase in serum 3-epi-25(OH)D3 levels, while exercise performed after 8 d of fasting induced an increase in 25(OH)D3, 24,25(OH)2D3, 25(OH)D2, and 3-epi-25(OH)D3 levels. CONCLUSION: Increases in 24,25(OH)2D3 and 3-epi-25(OH)D3 levels imply that fasting stimulates vitamin D metabolism. The effects of exercise on serum vitamin D metabolites, which are most pronounced after fasting and in subjects with serum 25(OH)D3 above 25 ng/mL, support the notion that fasting and exercise augment vitamin D metabolism.


Asunto(s)
Ejercicio Físico/fisiología , Ayuno/sangre , Salud , Metaboloma , Vitamina D/sangre , Composición Corporal , Humanos , Masculino , Persona de Mediana Edad , Inanición
12.
J Steroid Biochem Mol Biol ; 208: 105824, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33516786

RESUMEN

Infantile hypercalcemia (IH), is a rare disorder caused by CYP24A1 or SLC34A1 variants which lead to disturbed catabolism of 25(OH)D3 and 125(OH)2D3 or increased generation of 125(OH)2D3. AIM OF STUDY: To assess the status of 2425(OH)2D3 and other markers of vitamin D in IH survivors, in whom variants of CYP24A1 or SLC34A1 gene were found and to compare these unique biochemical features with those obtained from subjects who were diagnosed in the first year of life with hypercalcemia, elevated 25(OH)D3 and low PTH but in whom neither CYP24A1 nor SLC34A1 variant was found. PATIENTS AND METHODS: 16 IH survivors in whom CYP24A1 (n = 13) or SLC34A1 (n = 3) variants were found and 41 subjects in whom hypercalcemia was diagnosed in the first year of life but in whom CYP24A1 or SLC34A1 variants were not found were included in the study. 25(OH)D3, 3-epi-25(OH)D3, 25(OH)D2, 2425(OH)2D3 were assessed by liquid chromatography coupled with tandem mass spectrometry. 125(OH)2D3 concentrations were assessed by chemiluminescence. RESULTS: Subjects with CYP24A1 variants, despite normal 25(OH)D3 levels, had higher 25(OH)D3/2425(OH)2D3 ratio values (487; 265-1073 ng/mL) when compared to subjects with SLC34A1 variants (16; 16-23 ng/mL) and with subjects in whom CYP24A1 or SLC34A1 were not found (56; 9-56 ng/mL) (p = 0.00003). Separation of interfering metabolite further increased differences between subjects with and without CYP24A1 mutation. CONCLUSIONS: Survivors of IH with CYP24A1 variant, despite being normocalcemic, still presented extremely high 25(OH)D3/2425(OH)2D3 ratio values. Separation of interfering compound further increased differences between subjects with CYP24A1 mutation and without this mutation.


Asunto(s)
Colecalciferol/metabolismo , Hipercalcemia/tratamiento farmacológico , Hipercalcemia/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética , Vitamina D3 24-Hidroxilasa/genética , Colecalciferol/administración & dosificación , Colecalciferol/genética , Cromatografía Liquida , Femenino , Humanos , Hipercalcemia/metabolismo , Hipercalcemia/patología , Lactante , Recién Nacido , Masculino , Mutación , Espectrometría de Masas en Tándem , Vitamina D/genética , Vitamina D/metabolismo , Vitamina D3 24-Hidroxilasa/sangre
13.
Connect Tissue Res ; 62(2): 176-182, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-31462087

RESUMEN

Purpose/Aim of study: We previously cloned Tlcd3b2 (Tram-Lag1-CLN8 domain 3B2, formerly Fam57b2) from bone fracture repair callus tissue of Cyp24a1 knockout mice and showed that it synthesizes lactosylceramide (LacCer) under allosteric control of the vitamin D metabolite, 24,25-dihydroxyvitamin D3 [24,25(OH)2D3]. Tlcd3b2 was mainly detected in chondrocytes and the 24,25(OH)2D3-TLCD3B2-LacCer signaling cascade was shown to be important for optimal bone fracture repair, suggesting a role for TLCD3B2 in chondrocyte differentiation or maturation. We report the subcellular localization of TLCD3B2 and its effect on chondrocyte differentiation. Materials and Methods: Immunofluorescence detection of epitope-tagged mutants was used to assess localization. ATDC5 chondrogenic cells were transfected with Tlcd3b2 expression vectors to examine effects on chondrocyte differentiation. Results and Conclusions: TLCD3B2 localized to the endoplasmic reticulum, with both the N- and C-termini facing the cytosolic compartment. Chondrogenic ATDC5 cells stably overexpressing Tlcd3b2 showed elevated type 2 (Col2a1) and type 10 (Col10a1) collagen gene expression and increased proteoglycan synthesis, and the effect on Col2a1 was enhanced by treatment with 24,25(OH)2D3. LacCer treatment of ATDC5 cells potentiated Col10a1 expression. Our results show that TLCD3B2 is an ER protein and implicate its expression and enzymatic product in chondrocyte maturation.


Asunto(s)
Condrocitos , Animales , Diferenciación Celular , Células Cultivadas , Condrogénesis , Fracturas Óseas , Lactosilceramidos , Proteínas de la Membrana , Ratones
14.
Nutrients ; 12(12)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255807

RESUMEN

PURPOSE: While an increasing number of studies demonstrate the importance of vitamin D for athletic performance, the effects of any type of exercise on vitamin D metabolism are poorly characterized. We aimed to identify the responses of some vitamin D metabolites to ultra-marathon runs. METHODS: A repeated-measures design was implemented, in which 27 amateur runners were assigned into two groups: those who received a single dose of vitamin D3 (150,000 IU) 24 h before the start of the marathon (n = 13) and those (n = 14) who received a placebo. Blood samples were collected 24 h before, immediately after, and 24 h after the run. RESULTS: In both groups of runners, serum 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 levels significantly increased by 83%, 63%, and 182% after the ultra-marathon, respectively. The increase was most pronounced in the vitamin D group. Body mass and fat mass significantly decreased after the run in both groups. CONCLUSIONS: Ultra-marathon induces the mobilization of vitamin D into the blood. Furthermore, the 24,25(OH)2D3 and 3-epi-25(OH)D3 increases imply that the exercise stimulates vitamin D metabolism.


Asunto(s)
Carrera de Maratón , Vitamina D/farmacocinética , Método Doble Ciego , Humanos , Resistencia Física , Proyectos Piloto , Vitamina D/química , Vitamina D/metabolismo
15.
Nutrients ; 12(11)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172201

RESUMEN

To analyze if the prometastatic activity of calcitriol (active vitamin D3 metabolite), which was previously observed in a 4T1 breast cancer model, is also found in other breast cancers, and to assess the impact of various schemes of vitamin D supply, we used 4T1 and E0771 mouse metastatic and 67NR nonmetastatic cells in this study. BALB/c and C57BL/6 healthy and tumor-bearing mice were exposed to a control (1000 IU), low- (100 IU), and high- (5000 IU) vitamin D3 diets. Additionally, from day 7 of tumor transplantation, the 1000 and 100 IU groups were gavaged with calcitriol (+cal). After 8 weeks of feeding, plasma levels of 25(OH)D3, 24,25(OH)2D3, and 3-epi-25(OH)D3 were significantly lower in calcitriol-treated and vitamin D-deficient groups than in the control, whereas the levels of all metabolites were increased in the 5000 IU group. The ratio of 25(OH)D3:24,25(OH)2D3 was increased in both calcitriol-treated groups, whereas the ratio of 25(OH)D3:3-epi-25(OH)D3 was increased only in the 100 IU group but decreased in the 5000 IU group. In contrast to E0771, 4T1 lung metastasis was accelerated in all vitamin D-supplemented mice, as well as in the deficient group with an increased inflammatory response. 67NR tumor growth was transiently inhibited in the 1000 IU+cal group, but single metastases were observed in the 5000 and 100 IU groups. Based on the results, we conclude that various schemes of vitamin D supply and vitamin D deficiency led to similar metabolite profiles irrespective of the mice strain and tumor burden. However, depending on the type of breast cancer, different effects on tumor growth and metastasis were noticed.


Asunto(s)
Calcitriol/uso terapéutico , Colecalciferol/uso terapéutico , Suplementos Dietéticos , Neoplasias Mamarias Animales/tratamiento farmacológico , Metaboloma , Vitamina D/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Calcitriol/farmacología , Colecalciferol/farmacología , Femenino , Riñón/metabolismo , Cinética , Hígado/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/sangre , Neoplasias Mamarias Animales/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Vitamina D/sangre
17.
J Steroid Biochem Mol Biol ; 187: 130-133, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30476591

RESUMEN

The discovery that mutations of the CYP24A1 gene are a cause of idiopathic infantile hypercalcemia (IIH) has revived interest in measuring serum 24,25(OH)2D3. Several studies have also suggested that a high 25-hydroxyvitamin D3(25-OHD3):24,25(OH)2D3 ratio might provide additional diagnostic information in the investigation of vitamin D deficiency. Measurement of 24,25(OH)2D3 is necessarily restricted to laboratories with mass spectrometry methods although cross reactivity of the metabolite in immunoassays for 25-OHD is a potential cause of misleading results. The international External Quality Assessment (EQA) scheme for vitamin D metabolites (DEQAS) was set up in 1989. In 2013 DEQAS became an accuracy based EQA for 25-OHD with 'target values' assigned by the National Institute of Standards and Technology (NIST) Reference Measurement Procedure (RMP). A pilot scheme for serum 24,25(OH)2D3 was started in 2015 and participants were asked to measure the metabolite on each of the 5 samples sent out for 25-OHD. Inter-laboratory agreement was poor but this may reflect methodological differences, in particular different approaches to assay standardization. An important potential contribution to reducing variability among assays was the development by NIST of a 24,25(OH)2D3 RMP and its use in assigning values to SRMs 972a, 2973 and 2971, supported by the NIH Office of Dietary Supplements (ODS) as part of the Vitamin D Standardization Program (VDSP) effort.


Asunto(s)
Espectrometría de Masas en Tándem/métodos , Vitamina D/análogos & derivados , Vitaminas/sangre , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Humanos , Control de Calidad , Estándares de Referencia , Espectrometría de Masas en Tándem/normas , Vitamina D/sangre
18.
J Nutr Sci ; 7: e17, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721315

RESUMEN

More than one-third of humans and companion dogs in Western societies are overweight or obese. In people, vitamin D deficiency is widespread and associated with obesity, a now recognised inflammatory state. Low vitamin D status occurs in dogs with inflammatory conditions, but its relationship with obesity has not been investigated. In otherwise healthy privately owned adult dogs of ideal body condition (control, n 7) and dogs with overweight to obese body condition (treatment, n 8), serum 25-hydroxyvitamin D (25(OH)D) concentration and body composition as inferred from 2H-labelled water dilution space were evaluated. Subsequently, the dogs were transitioned to a commercial canine therapeutic weight-loss diet; control dogs were fed to maintain body weight and treatment dogs were energy-restricted to achieve a safe weight-loss rate. Thereafter, serum 25(OH)D concentration was re-evaluated 8 weeks after diet transition, and at the study end, which was 6 months or when ideal body condition was achieved. At study end, body composition analysis was repeated. Initial body condition scores and percentage body fat were positively correlated (ρ = 0·891; P < 0·001). However, percentage body fat and serum 25(OH)D concentration were not significantly correlated. Final serum 25(OH)D concentrations were greater (P < 0·05) than initial concentrations for control and treatment groups, indicating a diet but not weight-loss effect on vitamin D status. These findings suggest that vitamin D status of dogs is not affected by obesity or loss of body fat with therapeutic weight reduction.

19.
Clin Chem Lab Med ; 55(12): 1912-1921, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-28328526

RESUMEN

BACKGROUND: We investigate the effect of a high dose of vitamin D3 on circulating concentrations of 25(OH)D3 and its metabolites 24,25(OH)2D3, 3-epi-25(OH)D3, and 1,25(OH)2D3 in healthy individuals with self-perceived fatigue and vitamin D insufficiency [25(OH)D3<50 nmol/L]. METHODS: One hundred and seven study participants (age 20-50 years) were randomized to receive a single 100,000 IU dose of vitamin D3 (n=52) or placebo (n=55). Vitamin D metabolite concentrations in serum were measured before, and 4 weeks after, supplementation. RESULTS: Overall, 52% of participants receiving vitamin D3 attained a serum 25(OH)D3 level >75 nmol/L. Among individuals who received vitamin D3, there were significant increases in serum concentrations of 25(OH)D3 and its metabolites 24,25(OH)2D3, 3-epi-25(OH)D3, and 1,25(OH)2D3 at 4 weeks; however, inter-individual variability in these changes was substantial. Positive correlations between serum 25(OH)D3 and 24,25(OH)2D3 and 3-epi-25(OH)D3, and a significant negative correlation between serum 1,25(OH)2D3 and 3-epi-25(OH)D3, were found 4 weeks after supplementation. The 24,25(OH)2D3/25(OH)D3 and 24,25(OH)2D3/1,25(OH)2D3 ratios were significantly increased, compared with baseline, in participants receiving vitamin D3. Baseline 25(OH)D3 concentration was the only factor predictive of the change in 25(OH)D3 after supplementation. CONCLUSIONS: Administration of a single high dose of vitamin D3 leads to a significant increase in concentrations of 25(OH)D3, 24,25(OH)2D3, 3-epi-25(OH)D3 and 1,25(OH)2D3; induction of the catabolic pathway predominates over the production of 1,25(OH)2D3. Due to the high inter-individual variation in the 25(OH)D3 response to supplementation, any given dose of vitamin D is unlikely to achieve optimal vitamin D status in all treated individuals.


Asunto(s)
Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/metabolismo , Vitamina D/administración & dosificación , Vitamina D/sangre , Administración Oral , Adulto , Método Doble Ciego , Esquema de Medicación , Humanos , Persona de Mediana Edad , Estudios Prospectivos , Vitamina D/metabolismo , Adulto Joven
20.
J Bone Miner Res ; 32(7): 1589-1596, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28304097

RESUMEN

CYP24A1 mutations are now accepted as a cause of idiopathic infantile hypercalcemia (IIH). A rapid liquid-chromatography tandem mass spectrometry (LC-MS/MS)-based blood test enabling measurement of the 25-OH-D3 :24,25-(OH)2 D3 ratio (R) can identify IIH patients on the basis of reduced C24-hydroxylation of 25-OH-D3 by CYP24A1 in vivo. Although values of this ratio are significantly elevated in IIH, somewhat surprisingly, serum 24,25-(OH)2 D3 remains detectable. The current study explores possible explanations for this including: residual CYP24A1 enzyme activity in individuals with certain CYP24A1 genotypes, expression of alternative C24-hydroxylases, and the possibility of isobaric contamination of the 24,25-(OH)2 D3 peak on LC-MS/MS. We employed an extended 20-min run time on LC-MS/MS to study serum vitamin D metabolites in patients with IIH due to mutations of CYP24A1 or SLC34A1; in unaffected heterozygotes and dialysis patients; in patients with vitamin D deficiency; as well as in normal subjects exhibiting a broad range of 25-OH-D levels. We identified 25,26-(OH)2 D3 as a contaminant of the 24,25-(OH)2 D3 peak. In normals, the concentration of 24,25-(OH)2 D3 greatly exceeds 25,26-(OH)2 D3 ; however, 25,26-(OH)2 D3 becomes more significant in IIH with CYP24A1 mutations and in dialysis patients, where 24,25-(OH)2 D3 levels are low when CYP24A1 function is compromised. Mean R in 30 IIH-CYP24A1 patients was 700 (range, 166 to 2168; cutoff = 140) as compared with 31 in 163 controls. Furthermore, patients possessing CYP24A1 L409S alleles exhibited higher 24,25-(OH)2 D3 levels and lower R (mean R = 268; n = 8) than patients with other mutations. We conclude that a chromatographic approach which resolves 24,25-(OH)2 D3 from 25,26-(OH)2 D3 produces a more accurate R that can be used to differentiate pathological states where CYP24A1 activity is altered. The origin of the residual serum 24,25-(OH)2 D3 in IIH patients appears to be multifactorial. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
24,25-Dihidroxivitamina D 3/sangre , Hipercalcemia/sangre , Espectrometría de Masas/métodos , Anciano , Cromatografía Liquida , Femenino , Genotipo , Humanos , Hipercalcemia/genética , Persona de Mediana Edad , Mutación , Vitamina D3 24-Hidroxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA