Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Front Immunol ; 15: 1407237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947329

RESUMEN

Introduction: Red blood cells (RBCs), also known as erythrocytes, are underestimated in their role in the immune system. In mammals, erythrocytes undergo maturation that involves the loss of nuclei, resulting in limited transcription and protein synthesis capabilities. However, the nucleated nature of non-mammalian RBCs is challenging this conventional understanding of RBCs. Notably, in bony fishes, research indicates that RBCs are not only susceptible to pathogen attacks but express immune receptors and effector molecules. However, given the abundance of RBCs and their interaction with every physiological system, we postulate that they act in surveillance as sentinels, rapid responders, and messengers. Methods: We performed a series of in vitro experiments with Cyprinus carpio RBCs exposed to Aeromonas hydrophila, as well as in vivo laboratory infections using different concentrations of bacteria. Results: qPCR revealed that RBCs express genes of several inflammatory cytokines. Using cyprinid-specific antibodies, we confirmed that RBCs secreted tumor necrosis factor alpha (TNFα) and interferon gamma (IFNγ). In contrast to these indirect immune mechanisms, we observed that RBCs produce reactive oxygen species and, through transmission electron and confocal microscopy, that RBCs can engulf particles. Finally, RBCs expressed and upregulated several putative toll-like receptors, including tlr4 and tlr9, in response to A. hydrophila infection in vivo. Discussion: Overall, the RBC repertoire of pattern recognition receptors, their secretion of effector molecules, and their swift response make them immune sentinels capable of rapidly detecting and signaling the presence of foreign pathogens. By studying the interaction between a bacterium and erythrocytes, we provide novel insights into how the latter may contribute to overall innate and adaptive immune responses of teleost fishes.


Asunto(s)
Aeromonas hydrophila , Carpas , Citocinas , Eritrocitos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpas/inmunología , Carpas/microbiología , Eritrocitos/inmunología , Eritrocitos/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Aeromonas hydrophila/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Fagocitosis/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Inmunidad Innata
2.
Fish Shellfish Immunol ; 152: 109797, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084276

RESUMEN

Bacterial intestinal inflammation is a common disease of yellow catfish (Pelteobagrus fulvidraco) in high-density aquaculture. Understanding the interactions between host and intestinal bacteria is helpful to intestinal inflammatory disease control. Here, we constructed a model of intestinal inflammation after Aeromonas hydrophila infection in yellow catfish, and characterized variations in gene expression and microbiome in the gut through high-throughput sequencing. Furthermore, host gene-microbiome interactions were identified. Histology observation showed disordered distribution of columnar epithelial cells and decrease of goblet cells in intestine. A total of 4741 genes showed differentially expression, mostly in comparisons between 12 hpi group with each other groups respectively, including control, 24 hpi and 48 hpi groups. These genes were enriched in immune-related pathways including the IL-17 signaling pathway, triggering strong inflammatory response at the invading stage within 12 h. Subsequently, the host strengthened energy consumption by activating carbohydrate and lipid metabolism pathways to repair the intestinal mucosal immune defense line. In addition, fish with A. hydrophila infection show decreased richness of gut microbial, reduced relative abundance of probiotics including Akkermansia, and elevated pathogenic bacteria such as Plesimonas. An integrative analysis identified A. hydrophila-related genes, such as il22 and stat3, for which expression level is close associated with the shift of A. hydrophila-related bacteria relative abundance, such as Akkermansia and Cetobacterium. Aside from picturing the variations of intestine gene expression and mucosal microbiome of yellow catfish coping with A. hydrophila infection, our study probed the underlying host-microbe interactions in A. hydrophila infection induced intestinal inflammatory, providing new insights for disease control in aquaculture.


Asunto(s)
Aeromonas hydrophila , Bagres , Enfermedades de los Peces , Microbioma Gastrointestinal , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/fisiología , Bagres/inmunología , Bagres/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología
3.
Microb Ecol ; 87(1): 65, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695873

RESUMEN

Aeromonas hydrophila is an opportunistic motile pathogen with a broad host range, infecting both terrestrial and aquatic animals. Environmental and geographical conditions exert selective pressure on both geno- and phenotypes of pathogens. Flagellin, directly exposed to external environments and containing important immunogenic epitopes, may display significant variability in response to external conditions. In this study, we conducted a comparative analysis of ~ 150 A. hydrophila genomes, leading to the identification of six subunits of the flagellin gene (fla-1 to fla-4, flaA, and flaB). Individual strains harbored different composition of flagellin subunits and copies. The composition of subunits showed distinct patterns depending on environmental sources. Strains from aquatic environments were mainly comprised of fla-1 to fla-4 subunits, while terrestrial strains predominated in groups harboring flaA and flaB subunits. Each flagellin showed varying levels of expression, with flaA and flaB demonstrating significantly higher expression compared to others. One of the chemotaxis pathways that control flagellin movement through a two-component system was significantly upregulated in flaA(+ 1)/flaB(+ 1) group, whereas flaA and flaB showed different transcriptomic expressions. The genes positively correlated with flaA expression were relevant to biofilm formation and bacterial chemotaxis, but flaB showed a negative correlation with the genes in ABC transporters and quorum sensing pathway. However, the expression patterns of fla-2 to fla-4 were identical. This suggests various types of flagellin subunits may have different biological functions. The composition and expression levels of flagellin subunits could provide valuable insights into the adaptation of A. hydrophila and the differences among strains in response to various external environments.


Asunto(s)
Aeromonas hydrophila , Flagelina , Transcriptoma , Flagelina/genética , Aeromonas hydrophila/genética , Aeromonas hydrophila/fisiología , Filogeografía , Adaptación Fisiológica/genética , Filogenia , Biopelículas/crecimiento & desarrollo
4.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636736

RESUMEN

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Asunto(s)
Aeromonas hydrophila , Arginasa , Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Bacterias Gramnegativas , Mitocondrias , Óxido Nítrico , Animales , Aeromonas hydrophila/fisiología , Arginasa/genética , Arginasa/metabolismo , Enfermedades de los Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Óxido Nítrico/metabolismo , Carpas/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Arginina
5.
Front Immunol ; 15: 1369890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495891

RESUMEN

Aeromonas hydrophila, a gram-negative coccobacillus bacterium, can cause various infections in humans, including septic arthritis, diarrhea (traveler's diarrhea), gastroenteritis, skin and wound infections, meningitis, fulminating septicemia, enterocolitis, peritonitis, and endocarditis. It frequently occurs in aquatic environments and readily contacts humans, leading to high infection rates. This bacterium has exhibited resistance to numerous commercial antibiotics, and no vaccine has yet been developed. Aiming to combat the alarmingly high infection rate, this study utilizes in silico techniques to design a multi-epitope vaccine (MEV) candidate against this bacterium based on its aerolysin toxin, which is the most toxic and highly conserved virulence factor among the Aeromonas species. After retrieval, aerolysin was processed for B-cell and T-cell epitope mapping. Once filtered for toxicity, antigenicity, allergenicity, and solubility, the chosen epitopes were combined with an adjuvant and specific linkers to create a vaccine construct. These linkers and the adjuvant enhance the MEV's ability to elicit robust immune responses. Analyses of the predicted and improved vaccine structure revealed that 75.5%, 19.8%, and 1.3% of its amino acids occupy the most favored, additional allowed, and generously allowed regions, respectively, while its ERRAT score reached nearly 70%. Docking simulations showed the MEV exhibiting the highest interaction and binding energies (-1,023.4 kcal/mol, -923.2 kcal/mol, and -988.3 kcal/mol) with TLR-4, MHC-I, and MHC-II receptors. Further molecular dynamics simulations demonstrated the docked complexes' remarkable stability and maximum interactions, i.e., uniform RMSD, fluctuated RMSF, and lowest binding net energy. In silico models also predict the vaccine will stimulate a variety of immunological pathways following administration. These analyses suggest the vaccine's efficacy in inducing robust immune responses against A. hydrophila. With high solubility and no predicted allergic responses or toxicity, it appears safe for administration in both healthy and A. hydrophila-infected individuals.


Asunto(s)
Inteligencia Artificial , Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Vacunas , Humanos , Aeromonas hydrophila , Diarrea , Viaje , Aprendizaje Automático , Epítopos de Linfocito T , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos
6.
Fish Shellfish Immunol ; 145: 109315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134975

RESUMEN

In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4 h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4 h, and alterations in the ferroptosis pathway were observed at 8 h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8 h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas hydrophila/fisiología , Apoptosis , Eritrocitos , Glutatión , Infecciones por Bacterias Gramnegativas/microbiología , Mamíferos
7.
Heliyon ; 9(12): e22936, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130423

RESUMEN

The fish immune system, which consists of innate and adaptive immunologic processes, defends against viruses, bacteria, fungi, and parasites. The gut immunity is an integral part of the host immune system that controls immunological homeostasis, hosts' interactions with their microbiomes, and provides defence against a number of intestinal infections. Lepidocephalichthys guntea, a facultative air-breathing fish, was experimentally infected with Aeromonas hydrophila using intraperitoneal injection followed by bath challenge, and transcriptome data were used to examine the gut immune responses during disease progression and recovery from the diseased state without the use of medication. For the control or uninfected fish (FGC) and the infected fish that were kept for seven days (FGE1) and fifteen days (FGE2), separate water tanks were set up. Coding DNA sequences (CDS) for FGC and FGE1, FGC and FGE2, and FGE1 and FGE2 were analyzed for differential gene expression (DGE). The presence and expression of genes involved in the T cell receptor (TCR) signalling pathway, natural killer (NK) cell-mediated cytotoxicity pathway, and complement-mediated pathway, along with a large number of other immune-related proteins, and heat shock protein (HSPs) under various experimental conditions and its relationship to immune modulation of the fish gut was the primary focus of this study. Significant up-and-down regulation of these pathways shows that, in FGE1, the fish's innate immune system was engaged, whereas in FGE2, the majority of innate immune mechanisms were repressed, and adaptive immunity was activated. Expression of genes related to the immune system and heat-shock proteins was induced during this host's immunological response, and this information was then used to build a thorough network relating to immunity and the heat-shock response. This is the first study to examine the relationship between pathogenic bacterial infection, disease reversal, and modification of innate and adaptive immunity as well as heat shock response.

8.
Fish Shellfish Immunol Rep ; 5: 100122, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38023345

RESUMEN

The skin mucus of fish is an important part of the innate immune system, which is poorly understood at the proteomic level. The study established a complete map of the proteins in the skin mucus of Ctenopharangdon idella (C. idella) and discussed the Differentially Expressed Proteins (DEPs) after Aeromonas hydrophila (A. hydrophila) infection. Using Label Free Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis, a total of 126 proteins were identified as differentially expressed, 89 proteins of which were upregulated, and 37 proteins were downregulated. Functional annotations of DEPs showed that the upregulated proteins in the skin mucus of the treated group were mostly associated with complement system and cytoskeleton proteins, whereas downregulated proteins were associated with metabolism. The key upregulated immune proteins were transferrin variant C, lysozyme g, annexin A11, 26S proteasome non-ATPase regulatory subunit 8, hypothetical protein ROHU_000884, 60S ribosomal L7a, calpain-2 catalytic subunit-like protein, calpain-9-like protein, complement component C9, complement C3, cathepsin S, cathepsin Z, 14 kDa apolipo, heat shock protein and intelectin, whereas, leukocyte elastase inhibitor, annexin A11, C-factor-like protein, biotinidase isoform X1 and epidermal growth factor receptor substrate 15-like were the downregulated proteins. Moreover, we for the first-time report proteins such as coactosin, lamin-B2 and kelch 12, which were never reported in fish. Our study directly pointing out the possible immunological biomarkers in the skin mucus of C. idella after A. hydrophila treatment. Each of the protein we report in this study could be used as base to establish their mechanism of action during bacterial infection that may contribute to the strategies against bacterial prevention and control in fishes.

9.
Front Cell Infect Microbiol ; 13: 1271448, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868352

RESUMEN

Background: Aeromonas hydrophila is an important pathogen that mainly harms aquatic animals and exhibits resistance to a variety of antibiotics. This study investigated the effect of epigallocatechin-3-gallate (EGCG) on the virulence factors of A.hydrophila and its impact on adhesion, invasion, and cytotoxicity in Caco-2 cells. The potential mechanism of antibacterial activity of EGCG was investigated by transcriptomic analysis. Results: EGCG not only inhibited the production of biofilm, hemolytic activity, motility, and protease activity of A.hydrophila, but also reduced its adhesion, invasion, and cytotoxicity in Caco-2 cells. Transcriptomic analysis indicated that the antimicrobial activity of EGCG may be achieved by weakening the chemotaxis and stress response of the bacteria, as well as inhibiting the TonB system. Animal studies demonstrated that EGCG can significantly improve the survival rate and organs damage of zebrafish infected with A.hydrophila. Conclusion: EGCG would be a potential alternative drug for the prevention and treatment of A. hydrophila infections by anti-virulence mechanism.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Animales , Humanos , Aeromonas hydrophila/genética , Pez Cebra/microbiología , Células CACO-2 , Transcriptoma , Antibacterianos/farmacología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología
10.
Fish Shellfish Immunol ; 142: 109145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805110

RESUMEN

Aeromonas hydrophila (A. hydrophila) is one of major pathogenic bacteria in aquaculture and potentially virulent to grass carp (Ctenopharyngodon idella). As an essential nutrient for fish, vitamin D3 (VD3) has been reported to play a role against oxidative stress, but the exact mechanism remains to be elusive. In this study, we found that A. hydrophila induced ferrugination and macrophage aggregation in the spleen of grass carp. Along this line, using the splenic macrophages as the model, the effects of VD3 on A. hydrophila-caused iron deposition and subsequent injuries were determined. In the context, 1,25D3 (the active form of VD3) significantly reduced cellular free Fe2+, lipid peroxidation and lactic dehydrogenase (LDH) release induced by A. hydrophila in the splenic macrophages, indicating the protective effects of VD3 on A. hydrophila-led to ferroptosis-related injuries. In support of this notion, 1,25D3 was effective in hindering ferroptosis inducers-stimulated LDH release in the same cells. Mechanically, 1,25D3 enhanced iron export protein (ferroportin1) and glutathione peroxidase 4 (GPX4) protein levels, and glutathione (GSH) contents via vitamin D receptor (VDR). Moreover, NF-E2-related factor 2 (Nrf2) pathway mediated the regulation of 1,25D3 on GPX4 protein expression and GSH synthesis. Meanwhile, 1,25D3 maintained the stability of Nrf2 proteins possibly by attenuating its ubiquitination degradation. Furthermore, in vivo experiments showed that 1,25D3 injection could not only improve the survival of fish infected by A. hydrophila, but also enhance GSH amounts and decrease malonaldehyde (MDA) contents and iron deposition in the spleen. In summary, our data for the first time suggest that VD3 is a potential antioxidant in fish to fight against A. hydrophila induced-ferroptotic damages.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Antioxidantes/metabolismo , Aeromonas hydrophila/fisiología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inmunidad Innata , Vitamina D/farmacología , Hierro , Carpas/metabolismo , Proteínas de Peces/metabolismo , Estrés Oxidativo , Vitaminas/farmacología , Glutatión/metabolismo , Macrófagos/metabolismo , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología
11.
Fish Shellfish Immunol ; 141: 109047, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673385

RESUMEN

This study aimed to investigate the effect of Bacillus aryabhattai (LSG3-7) and Bacillus mojavensis (LSG3-8) on growth performance, antioxidant capacity, and immune response in Rhynchocypris lagowskii (Dybowski, 1869), at the trial and challenge periods. A 630 healthy fish (10.76 ± 0.05) were randomly divided into six groups: control group (D1) was fed the basal diet, D2 and D3 were supplemented with LSG 3-7 and LSG3-8 (1 × 108 CFU/g) for both of them, whereas D4 was supplemented with a mixture of both bacteria (0.5 × 108 CFU/g each), and D5 was supplemented with LSG3-7 0.75 × 108 CFU/g + LSG3-8 0.25 × 108 CFU/g, and D6 supplemented with LSG3-7 0.25 × 108 CFU/g + LSG3-8 0.75 × 108 CFU/g. After the trial, Aeromonas hydrophila was used in a challenge test for 14 days. Treatments showed significant differences (p < 0.05) in growth performance and antioxidant capacity (CAT, CuZn-SOD, GPX) in the liver and intestine compared to the control. The antioxidant-related genes CAT, CuZn-SOD, GPX, and Nrf2 in the liver and intestine showed upregulation compared with the control group. Serum IgM, LZM, C3, C4, and AKP showed a favorable superiority (p < 0.05) in treatments (D2 - D6) at the trial and challenge test compared to controls. In parallel, immune-related genes (IgM, NF-κB, TLR-1, TLR-2, and MyD88) showed an up-regulated level (p < 0.05) in treatments (D2 - D6) compared to the control. In addition, pro-inflammatory cytokines (IL-1, TNF-α) showed a downregulated level in treatments (D2 - D6). After the challenge test, the immune-related genes in the liver and muscle showed an up-regulated level in treatments compared to the controls. The survival rate showed a significant increase (p < 0.05) in the treatment groups (D2 - D6) compared to the control. Overall, individuals and the bacterial mixture of B. aryabhattai and B. mojavensis could improve the growth performance, antioxidant capacity, immune capacity, and survival rate of R. lagowskii and prevent side effects of A. hydrophila. However, B. mojavensis showed a slight improvement compared to B. aryabhattai without a significant difference between them.

12.
Pathogens ; 12(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37764959

RESUMEN

The genus Aeromonas belongs to the Aeromonadaceae family. A patient with a pancreas-kidney transplant had multiple episodes of abdominal sepsis after surgery. Aeromonas hydrophila was isolated in the ascitic and biliary fluid drains. After discharge, the patient had several diarrhea episodes, and A. hydrophila was isolated in four stool samples. We decided to test whether the one strain that we initially isolated in ascitic fluid was the same that appeared in the successive stool samples. Five isolates of A. hydrophila were found in the patient. Identification was performed using the MALDI-TOF system and confirmed via multiplex PCR. The analysis of the REP-PCR fingerprint patterns showed one cluster and confirmed that all isolates were related. We also demonstrated the virulent character of this species associated with genes encoding different toxins (act, alt, ast, hlyA, and aerA). The virulence of this species is associated with the expression of genes that encode different toxins, structural proteins, and metal-associated proteins. This case report highlights the severity of this disease, especially in immunocompromised patients, and its adequate treatment.

13.
Int J Biol Macromol ; 253(Pt 4): 127040, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37742888

RESUMEN

This study was conducted to elucidate the effects of FOS that alleviate Aeromonas hydrophila-induced intestinal damage. The results showed that A. hydrophila disrupted the intestinal structure and increased intestinal permeability, causing abnormalities in mucosal pathology. Additionally, A. hydrophila induced an imbalance in the intestinal flora and disturbed its stability. Dietary FOS ameliorated the injury to the intestinal structure of fish, but also in part improved the condition of the intestinal tight junction complex. Transcriptomic analysis showed that 120 genes were up-regulated and 320 genes were down-regulated. The intestinal immune network for the IgA production signalling pathway was enriched following A. hydrophila infection, and the change in the FOS group was mainly in the Tight junction signalling pathway. Similarly, dietary FOS reduced the disruption of the intestinal microbiota induced by A. hydrophila and improved the intestinal microbiota's stability; FOS was also partially implicated in the upregulation of Tight junction and Adhesion junction pathways by transcriptomic analysis. After further analysis, it was found that fish fed FOS had upregulated expression of genes related to apoptosis, antigen presentation, and the T-cell-mediated immune response in the intestine compared with those in the A. hydrophila group, which may be related to changes in the intestinal microbiome.


Asunto(s)
Carpas , Cipriniformes , Enfermedades de los Peces , Animales , ARN Ribosómico 16S , Aeromonas hydrophila , Intestinos , Perfilación de la Expresión Génica , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/genética
14.
Microorganisms ; 11(8)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37630587

RESUMEN

Bacterial quorum sensing (QS) plays a crucial role in chemical communication between bacteria involving autoinducers and receptors and controls the production of virulence factors in bacteria. Therefore, reducing the concentration of signaling molecules in QS is an effective strategy for mitigating the virulence of pathogenic bacteria. In this study, we demonstrated that carvacrol at 15.625 µg/mL (1/4 MIC), a natural compound found in plants, exhibits potent inhibitory activity against QS in Chromobacterium violaceum, as evidenced by a significant reduction (62.46%) in violacein production. Based on its impressive performance, carvacrol was employed as a natural QS inhibitor to suppress the pathogenicity of Aeromonas hydrophila NJ-35. This study revealed a significant reduction (36.01%) in the concentration of N-acyl-homoserine lactones (AHLs), a QS signal molecular secreted by A. hydrophila NJ-35, after 1/4 MIC carvacrol treatment. Moreover, carvacrol was found to down-regulate the expression of ahyR/I, two key genes in the QS system, which further inhibited the QS system of A. hydrophila NJ-35. Finally, based on the above results and molecular docking, we proposed that carvacrol alleviate the pathogenicity of A. hydrophila NJ-35 through QS inhibition. These results suggest that carvacrol could serve as a potential strategy for reducing the virulence of pathogenic bacteria and minimizing the reliance on antibiotics in aquaculture.

15.
BMC Vet Res ; 19(1): 120, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573362

RESUMEN

BACKGROUND: Aeromonas hydrophila is a zoonotic bacterial pathogen that frequently causes disease and mass mortalities among cultured and feral fishes worldwide. In Ethiopia, A. hydrophila outbreak was reported in Sebeta fish ponds and in Lake Tana fishery. However, there is no to little information on the molecular, and phenotypical characteristics of A. hydrophila in Ethiopian fisheries. Therefore, a cross-sectional study was conducted from November 2020 to May 2021 in selected Ethiopian Rift valley lakes. RESULTS: A total of 140 samples were collected aseptically from fish (Muscle, Gill, Intestine, Spleen and Kidney) from fish landing sites, market and restaurants with purposive sampling methods. Aeromonas selective media (AMB), morphological and biochemical tests were used to isolate and identify A. hydrophila. Accordingly, the pathogen was isolated from 81 (60.45%) of samples. Among the isolates 92.59% expressed virulence trait through ß hemolysis on blood agar media with 5% sheep blood. Moreover, 54 strains (66.67%) were further confirmed with Real-Time PCR (qPCR) using ahaI gene specific primers and optimized protocol. The highest (68.51%) were detected from live fish, (24.07%) were from market fish and the lowest (7.4%%) were from ready-to-eat products. Antibiogram analysis was conducted on ten representative isolates. Accordingly, A. hydrophila isolates were susceptible to ciprofloxacin (100%), chloramphenicol (100%) and ceftriaxone (100%). However, all ten isolates were resistant to Amoxicillin and Penicillin. CONCLUSIONS: The study indicates A. hydrophila strains carrying virulence ahaI gene that were ß-hemolytic and resistant to antibiotics commonly used in human and veterinary medicine are circulating in the fishery. The detection of the pathogen in 140 of the sampled fish population is alarming for potential outbreaks and zoonosis. Therefore, further molecular epidemiology of the disease should be studied to establish potential inter host transmission and antibiotic resistance traits. Therefore, raising the public awareness on risk associated with consuming undercooked or raw fish meat is pertinent.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Enfermedades de las Ovejas , Humanos , Animales , Ovinos , Cíclidos/microbiología , Aeromonas hydrophila/genética , Lagos , Etiopía/epidemiología , Estudios Transversales , Productos Pesqueros , Pruebas de Sensibilidad Microbiana/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología
16.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37373406

RESUMEN

Large-scale mortality due to Aeromonas hydrophila (A. hydrophila) infection has considerably decreased the yield of the Chinese pond turtle (Mauremys reevesii). Purslane is a naturally active substance with a wide range of pharmacological functions, but its antibacterial effect on Chinese pond turtles infected by A. hydrophila infection is still unknown. In this study, we investigated the effect of purslane on intestinal morphology, digestion activity, and microbiome of Chinese pond turtles during A. hydrophila infection. The results showed that purslane promoted epidermal neogenesis of the limbs and increased the survival and feeding rates of Chinese pond turtles during A. hydrophila infection. Histopathological observation and enzyme activity assay indicated that purslane improved the intestinal morphology and digestive enzyme (α-amylase, lipase and pepsin) activities of Chinese pond turtle during A. hydrophila infection. Microbiome analysis revealed that purslane increased the diversity of intestinal microbiota with a significant decrease in the proportion of potentially pathogenic bacteria (such as Citrobacter freundii, Eimeria praecox, and Salmonella enterica) and an increase in the abundance of probiotics (such as uncultured Lactobacillus). In conclusion, our study uncovers that purslane improves intestinal health to protect Chinese pond turtles against A. hydrophila infection.


Asunto(s)
Aeromonas hydrophila , Infecciones por Bacterias Gramnegativas , Portulaca , Tortugas , Animales , Digestión , Microbioma Gastrointestinal , Tortugas/microbiología , Tortugas/fisiología , Infecciones por Bacterias Gramnegativas/complicaciones , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/terapia , Conducta Alimentaria
17.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296630

RESUMEN

Canonical Wnt signaling plays a major role in regulating microbial pathogenesis. However, to date, its involvement in A. hydrophila infection is not well known. Using zebrafish (Danio rerio) kidney macrophages (ZKM), we report that A. hydrophila infection upregulates wnt2, wnt3a, fzd5, lrp6, and ß-catenin (ctnnb1) expression, coinciding with the decreased expression of gsk3b and axin. Additionally, increased nuclear ß-catenin protein accumulation was observed in infected ZKM, thereby suggesting the activation of canonical Wnt signaling in A. hydrophila infection. Our studies with the ß-catenin specific inhibitor JW67 demonstrated ß-catenin to be pro-apoptotic, which initiates the apoptosis of A. hydrophila-infected ZKM. ß-catenin induces NADPH oxidase (NOX)-mediated ROS production, which orchestrates sustained mitochondrial ROS (mtROS) generation in the infected ZKM. Elevated mtROS favors the dissipation of the mitochondrial membrane potential (ΔΨm) and downstream Drp1-mediated mitochondrial fission, leading to cytochrome c release. We also report that ß-catenin-induced mitochondrial fission is an upstream regulator of the caspase-1/IL-1ß signalosome, which triggers the caspase-3 mediated apoptosis of the ZKM as well as A. hydrophila clearance. This is the first study suggesting a host-centric role of canonical Wnt signaling pathway in A. hydrophila pathogenesis wherein ß-catenin plays a primal role in activating the mitochondrial fission machinery, which actively promotes ZKM apoptosis and helps in containing the bacteria.


Asunto(s)
Pez Cebra , beta Catenina , Animales , beta Catenina/metabolismo , Pez Cebra/metabolismo , Caspasa 1/metabolismo , Aeromonas hydrophila/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Dinámicas Mitocondriales , Macrófagos/metabolismo
18.
Fish Shellfish Immunol ; 137: 108789, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37149235

RESUMEN

Goldfish (Carassius auratus) have been employed as a model organism to investigate the innate immune system and host-pathogen interactions. A Gram-negative bacterium called Aeromonas hydrophila has been found to cause mass mortality due to infection in a wide variety of fish species in the aquatic system. In this study, damages in Bowman's capsule, inflammatory tubular (proximal and distilled convoluted) structure, and glomerular necrosis were observed in A. hydrophila-infected head kidney of goldfish. To increase the better understanding of immune mechanisms of host defense against A. hydrophila, we performed a transcriptome analysis in head kidney of goldfish at 3 and 7 days of post-infection (dpi). Comparing to the control group, 4638 and 2580 differentially expressed genes (DEGs) were observed at 3 and 7 dpi, respectively. The DEGs were subsequently enriched in multiple immune-related pathways including Protein processing in endoplasmic reticulum, Insulin signaling pathway, and NOD-like receptor signaling pathway. The expression profile of immune-related genes such as TRAIL, CCL19, VDJ recombination-activating protein 1-like, Rag-1, and STING was validated by qRT-PCR. Furthermore, the levels of immune-related enzyme (LZM, AKP, SOD, and CAT) activities were examined at 3 and 7 dpi. The knowledge gained from the current study will be helpful for better understanding of early immune response in goldfish after A. hydrophila challenge, which will aid in future research on prevention strategies in teleost.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Carpa Dorada/genética , Aeromonas hydrophila/fisiología , Perfilación de la Expresión Génica/veterinaria , Inmunidad Innata/genética , Transcriptoma
19.
Fish Shellfish Immunol ; 134: 108579, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36738947

RESUMEN

Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) that can recognize pathogen-associated molecular patterns (PMPs) and play important roles in the innate immune system in vertebrates. In this study, we identified a teleost-specific tlr22 gene from yellow catfish (Pelteobagrus fulvidraco) and its immune roles in response to different pathogens were also determined. The open reading frame (ORF) of the tlr22 was 2892 bp in length, encoding a protein of 963 amino acids. Multiple protein sequences alignment, secondary and three-dimensional structure analyses revealed that TLR22 is highly conserved among different fish species. Phylogenetic analysis showed that the phylogenetic topology was divided into six families of TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11, and TLR22 subfamily was clustered into TLR11 family. Meanwhile, synteny and gene structure comparisons revealed functional and evolutionary conservation of the tlr22 gene in teleosts. Furthermore, tlr22 gene was shown to be widely expressed in detected tissues except barbel and eye, with highest expression level in liver. The transcription of tlr22 was significantly increased in spleen, kidney, liver and gill tissues at different timepoints after Poly I:C infection, suggesting TLR22 plays critical roles in defensing virus invasion. Similarly, the transcription of tlr22 was also dramatically up-regulated in spleen, kidney and gill tissues with different patterns after Aeromonas hydrophila infection, indicating that TLR22 is also involved in resisting bacteria invasion. Our findings will provide a solid basis for the investigation the immune functions of tlr22 gene in teleosts, as well as provide useful information for disease control and treatment for yellow catfish.


Asunto(s)
Bagres , Enfermedades de los Peces , Animales , Regulación de la Expresión Génica , Aeromonas hydrophila/fisiología , Filogenia , Receptores Toll-Like/genética , Poli I-C , Proteínas de Peces/genética
20.
F1000Res ; 12: 293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38817412

RESUMEN

Background: Strategies to increase body resistance and prevent disease in aquaculture include using vaccines, antibiotics, and probiotics. Today, the use of antibiotics with natural ingredients is becoming a trend. Sargassum sp is a natural ingredient that contains high antioxidants and antibiotics. Methods: This research was conducted from March to May 2022 at the Biotechnology Laboratory, Faculty of Fisheries and Marine, Universitas Riau, in two stages: 1) the sensitivity of extracts of Sargassum sp. and 2) the application of Sargassum sp. extract orally in tilapia ( O. niloticus). The parameters measured were clear zone, minimum inhibitory concentration, LD 50 test of leaf extract of Sargassum sp. in tilapia ( O. niloticus), hemoglobin levels, hematocrit, total leukocytes, total erythrocytes, leukocyte differentiation, and survival rate. Data on hematology parameters were tabulated and analyzed using a One-Way ANOVA followed by a Student Newman Keuls (SNK) test when deemed necessary. Results: The results showed that the extract of Sargassum sp. inhibited the growth of Aeromonas hydrophila bacteria with a clear zone of 6.5-15.0 mm, which is classified as resistant. At doses of 2000, 2500, and 3000 ppm, it did not cause death in fish for 96 hours (LD 50). Hematological parameters can be a sign of the health status of fish. Tilapia given Sargassum sp. in different doses gave an effect between treatments after 30 days of rearing and post-test against A. hydrophila bacteria (p<0.05). The results showed that the hematology of fish fed with Sargassum sp. extract was in the normal or healthy range. Healthy tilapia had erythrocyte counts ranging from 1.34-2.11×10 6 cells/mm 3, hematocrit 26.17-33.19%, hemoglobin 6.26-11.2 g/dL and total leukocytes 1.01-1.50×10 4 cells/mm 3 and total erythrocytes 5.88-9.13×10 4 cells/ mm 3. Conclusions: A dose of 3000 ppm provided the highest health improvement against A. hydrophila bacterial infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA