Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Herb Med ; 38: 100635, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36718131

RESUMEN

Introduction: A worldwide pandemic infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a deadly disease called COVID-19. Interaction of the virus and the Angiotensin converting-enzyme 2 (ACE2) receptor leads to an inflammatory-induced tissue damage. Thymus vulgaris L. (TvL) is a plant with a long history in traditional medicine that has antimicrobial, antiseptic, and antiviral properties. Thymol and Carvacrol are two important biological components in Thyme that have anti-inflammatory, antioxidant, and immunomodulatory properties. This study is a molecular review on the potential effects of TvL and its active compounds on SARS-COV2 infection. Method: This is a narrative review in which using PubMed, Scopus, ISI, Cochrane, ScienceDirect, Google scholar, and Arxiv preprint databases, the molecular mechanisms of therapeutic and protective effects of TvL and its active compounds have been discussed regarding the molecular pathogenesis in COVID-19. Results: Thyme could suppress TNF-alpha, IL-6, and other inflammatory cytokines. It also enhances the anti-inflammatory cytokines like TGF-beta and IL-10. Thyme extract acts also as an inhibitor of cytokines IL-1-beta and IL-8, at both mRNA and protein levels. Thymol may also control the progression of neuro-inflammation toward neurological disease by reducing some factors. Thyme and its active ingredients, especially Thymol and Carvacrol, have also positive effects on the renin-angiotensin system (RAS) and intestinal microbiota. Conclusions: Accordingly, TvL and its bioactive components may prevent COVID-19 complications and has a potential protective role against the deleterious consequences of the disease.

2.
J Med Life ; 16(10): 1482-1487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38313184

RESUMEN

The novel Coronavirus disease (COVID-19) is associated with an increased risk of cerebrovascular events. About 1,228 cases of severe COVID-19 were hospitalized in the West Kazakhstan Medical University Hospital, in Aktobe, Kazakhstan, 1.22% (N=15) of whom were clinically diagnosed with acute cerebrovascular events and were included in the current study. COVID-19 was diagnosed using a nasopharyngeal polymerase chain reaction (PCR) test, blood count, inflammatory markers, and chest computerized tomography. The diagnosis of acute cerebrovascular events was based on the clinical manifestation. The participants' data were reviewed to detect the prevalence of acute cerebrovascular events and the inflammatory markers associated with COVID-19 infection. The mean age of the participants was 66.9 years (±11.07), 53% (N=8) of them were male, while 47% (N=7) were female. Moreover, 13% (N=2) presented a history of cerebrovascular events, 87% (N=13) of the participants had hypertension, 47% (N=7) had coronary heart disease, 33% (N=5) had diabetes mellitus (DM), 13% (N=2) had cardiac arrhythmia, and 13% (N=2) had chronic obstructive pulmonary disease (COPD). The C-reactive protein was high in 100% (N=15) of participants, D-dimer in 87% (N=13) of them, and both the ferritin and interleukin-6 were high in 60% (N=9) of the participants. SARS-CoV-2 causes a systemic inflammatory response, and the presence of comorbidities increases the risk of acute cerebrovascular events in COVID-19-infected individuals. The elevated inflammatory markers in severely COVID-19-infected individuals support the inflammatory "cytokine storm" response theory.


Asunto(s)
COVID-19 , Diabetes Mellitus , Hipertensión , Anciano , Femenino , Humanos , Masculino , Comorbilidad , SARS-CoV-2 , Persona de Mediana Edad
3.
Comput Struct Biotechnol J ; 20: 5378-5392, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212529

RESUMEN

Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.

4.
Arch Bronconeumol ; 57: 13-20, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34629634

RESUMEN

INTRODUCTION: Patients with pre-existing respiratory diseases in the setting of COVID-19 may have a greater risk of severe complications and even death. METHODS: A retrospective, multicenter, cohort study with 5847 COVID-19 patients admitted to hospitals. Patients were separated in two groups, with/without previous lung disease. Evaluation of factors associated with survival and secondary composite end-point such as ICU admission and respiratory support, were explored. RESULTS: 1,271 patients (22%) had a previous lung disease, mostly COPD. All-cause mortality occurred in 376 patients with lung disease (29.5%) and in 819 patients without (17.9%) (p < 0.001). Kaplan-Meier curves showed that patients with lung diseases had a worse 30-day survival (HR = 1.78; 95%C.I. 1.58-2.01; p < 0.001) and COPD had almost 40% mortality. Multivariable Cox regression showed that prior lung disease remained a risk factor for mortality (HR, 1.21; 95%C.I. 1.02-1.44; p = 0.02). Variables independently associated with all-cause mortality risk in patients with lung diseases were oxygen saturation less than 92% on admission (HR, 4.35; 95% CI 3.08-6.15) and elevated D-dimer (HR, 1.84; 95% CI 1.27-2.67). Age younger than 60 years (HR 0.37; 95% CI 0.21-0.65) was associated with decreased risk of death. CONCLUSIONS: Previous lung disease is a risk factor for mortality in patients with COVID-19. Older age, male gender, home oxygen therapy, and respiratory failure on admission were associated with an increased mortality. Efforts must be done to identify respiratory patients to set measures to improve their clinical outcomes.


INTRODUCCIÓN: Los pacientes con enfermedades respiratorias preexistentes pueden tener en el contexto de la covid-19 un mayor riesgo de complicaciones graves e incluso de muerte. MÉTODOS: Estudio de cohortes multicéntrico y retrospectivo de 5.847 pacientes con covid-19 ingresados en hospitales. Los pacientes se separaron en 2 grupos, sin y con enfermedad pulmonar previa. Se evaluaron factores asociados con la supervivencia y criterios combinados de valoración secundarios, como el ingreso en la UCI y la necesidad de asistencia respiratoria. RESULTADOS: Mil doscientos setenta y un (1.271) pacientes (22%) tenían una enfermedad pulmonar previa, principalmente EPOC. La mortalidad por todas las causas ocurrió en 376 pacientes con enfermedad pulmonar (29,5%) y en 819 pacientes sin enfermedad pulmonar (17,9%; p < 0,001). Las curvas de Kaplan-Meier mostraron que los pacientes con enfermedades pulmonares tenían una peor supervivencia a los 30 días (HR: 1,78; IC del 95%: 1,58-2,01; p < 0,001) y la EPOC tenía una mortalidad de casi el 40%. La regresión de Cox multivariante mostró que la enfermedad pulmonar previa seguía siendo un factor de riesgo de mortalidad (HR: 1,21; IC del 95%: 1,02-1,44; p = 0,02). Las variables asociadas de forma independiente con el riesgo de muerte por todas las causas en pacientes con enfermedades pulmonares fueron la saturación de oxígeno inferior al 92% al ingreso (HR: 4,35; IC del 95%: 3,08-6,15) y el dímero D elevado (HR: 1,84; IC del 95%: 1,27-2,67). La edad menor de 60 años (HR: 0,37; IC del 95%: 0,21-0,65) se asoció con una disminución del riesgo de muerte. CONCLUSIONES: La enfermedad pulmonar previa es un factor de riesgo de muerte en pacientes con covid-19. La edad avanzada, el sexo masculino, la oxigenoterapia domiciliaria y la insuficiencia respiratoria al ingreso se asociaron con un aumento de la mortalidad. Se deben realizar esfuerzos para identificar a los pacientes respiratorios y establecer medidas para mejorar sus resultados clínicos.

5.
J Funct Foods ; 77: 104149, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32837538

RESUMEN

Rhizoma Polygonati (huangjing in Chinese, ) is a medicine food homology herb used as a component of traditional Chinese medicine treating COVID-19 in the current pandemic emergency in China but the mechanisms remain elusive. Here using TCMSP and Swiss Target Prediction databases to sort out the potential targets of the main chemical components and GenCLiP3, NCBI, and GeneCard databases to search for COVID-19 related targets, the chemical compound-target-pathway network was analyzed. Each component was molecularly docked with host cell target angiotensin converting enzyme II, SARS-CoV-2 targets Spike protein, RNA-dependent RNA polymerase, or 3CL hydrolase. Our results showed a higher affinity of the compound diosgenin and (+)-Syringaresinol-O-beta-D-glucoside binding to the three SARS-CoV-2 proteins compared to the other compounds tested. Thus, our data suggest that potential compounds in Rhizoma Polygonati may act on different targets with viral and cancer related signaling and have a great potential in treatment of COVID-19.

6.
Comput Struct Biotechnol J ; 18: 3518-3527, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33200026

RESUMEN

The outbreak of COVID-19 raises an urgent need for the therapeutics to contain the emerging pandemic. However, no effective treatment has been found for SARS-CoV-2 infection to date. Here, we identified puerarin (PubChem CID: 5281807), quercetin (PubChem CID: 5280343) and kaempferol (PubChem CID: 5280863) as potential compounds with binding activity to ACE2 by using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Molecular docking analysis showed that puerarin and quercetin exhibit good binding affinity to ACE2, which was validated by surface plasmon resonance (SPR) assay. Furthermore, SPR-based competition assay revealed that puerarin and quercetin could significantly affect the binding of viral S-protein to ACE2 receptor. Notably, quercetin could also bind to the RBD domain of S-protein, suggesting not only a receptor blocking, but also a virus neutralizing effect of quercetin on SARS-CoV-2. The results from network pharmacology and bioinformatics analysis support a view that quercetin is involved in host immunomodulation, which further renders it a promising candidate against COVID-19. Moreover, given that puerarin is already an existing drug, results from this study not only provide insight into its action mechanism, but also propose a prompt application of it on COVID-19 patients for assessing its clinical feasibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA