Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Arch Pharm (Weinheim) ; 356(12): e2300384, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806747

RESUMEN

A library of 22 derivatives of 1,3,4-oxadiazole-2-thiol was synthesized, structurally characterized, and assessed for its potential to inhibit α-amylase, α-glucosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and antioxidant activities. Most of the tested compounds demonstrated good to moderate inhibition potential; however, their activity was lower than that of the standard acarbose. Significantly, compound 3f exhibited the highest inhibition potential against α-glucosidase and α-amylase enzymes, with IC50 values of 18.52 ± 0.09 and 20.25 ± 1.05 µM, respectively, in comparison to the standard acarbose (12.29 ± 0.26; 15.98 ± 0.14 µM). Compounds also demonstrated varying degrees of inhibitory potential against AChE (IC50 = 9.25 ± 0.19 to 36.15 ± 0.12 µM) and BChE (IC50 = 10.06 ± 0.43 to 35.13 ± 0.12 µM) enzymes compared to the standard donepezil (IC50 = 2.01 ± 0.12; 3.12 ± 0.06 µM), as well as DPPH (IC50 = 20.98 ± 0.06 to 52.83 ± 0.12 µM) and ABTS radical scavenging activities (IC50 = 22.29 ± 0.18 to 47.98 ± 0.03 µM) in comparison to the standard ascorbic acid (IC50 = 18.12 ± 0.15; 19.19 ± 0.72). The kinetic investigations have demonstrated that the compounds exhibit competitive-type inhibition for α-amylase, noncompetitive-type inhibition for α-glucosidase and AChE, and mixed-type inhibition for BChE. Additionally, a molecular docking study was performed on all synthetic oxadiazoles to explore the interaction details of these compounds with the active sites of the enzymes.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Humanos , Butirilcolinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , alfa-Glucosidasas/metabolismo , Acarbosa , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Oxadiazoles/farmacología , alfa-Amilasas
2.
Exp Appl Acarol ; 91(2): 319-330, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37735304

RESUMEN

The cattle tick Rhipicephalus (Boophilus) microplus is a major problem of concern for cattle industry in tropical and subtropical areas. Control of cattle tick is based mainly on the use of chemical acaricides, which has contributed to the emerging problem of selection of resistant tick lineages. Plants have been used as an alternative to conventional acaricidal drugs. On the other hand, the acaricidal activity of hydroethanolic extract of Randia aculeata seed (EHRA) has been demonstrated against R. microplus under laboratory conditions. However, the utility of EHRA seed as a potential acaricidal needs to be determined under field conditions. For this reason, the aim of this study was to evaluate the efficacy of the EHRA against R. microplus sprayed on naturally infested calves, determine the effect of the EHRA seed on acetylcholinesterase activity in R. microplus larval and identify the chemical composition of EHRA. Forty-five male calves were divided in three groups and treated with: G1 water; G2 EHRA 20% w/v and G3 coumaphos 0.2% v/v. Acetylcholinesterase (AChE) activity in R. microplus larvae was determined by a colorimetric assay. The chemical composition of EHRA was accessed through HPLC/MS. Significantly fewer ticks were observed after 24 h on the treated group compared to control group. EHRA significantly inhibited in vitro AChE activity in R. microplus at all tested concentrations. Chlorogenic acid, vanillinic acid, p-coumaric acid, caffeic acid. rutin, quercetin, (-)-epicatechin, 4-hydroxybenzoic acid, quercetin, vanillin, 2,4-dimethoxy-6-methylbenzoic acid, scopoletin and ferulic acid were identified in the extract. The results provided new data for the elucidation of the mechanisms of EHRA acaricide action and to further evaluate the use as a new alternative control agent against R. microplus under in vivo conditions.


Asunto(s)
Acaricidas , Enfermedades de los Bovinos , Escarabajos , Ixodidae , Rhipicephalus , Infestaciones por Garrapatas , Animales , Bovinos , Acetilcolinesterasa , Quercetina/farmacología , Quercetina/uso terapéutico , Acaricidas/farmacología , Semillas , Larva , Extractos Vegetales/farmacología , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/prevención & control , Infestaciones por Garrapatas/tratamiento farmacológico , Infestaciones por Garrapatas/prevención & control , Infestaciones por Garrapatas/veterinaria
3.
J Biomol Struct Dyn ; 41(20): 11286-11323, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36579430

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aß) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Inhibidores de la Colinesterasa/química , Relación Estructura-Actividad
4.
Med Chem ; 19(2): 132-146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36043764

RESUMEN

BACKGROUND: Understanding the cognitive and behavioral aspects of Alzheimer's disease- related dementia is surely a sturdy task to deal with. In recent years, a broad search for novel anti-Alzheimer agents has been continuously conducted. The malfunctioning of various neurotransmitter systems and the accumulation of abnormal proteins in the brain are the two key characteristics of this disorder. This is supported by a growing amount of evidence. Some Pharmacophoric groups/combinations exhibit potential neuroprotective activity. METHODS: This study aims to compile the most recent and interesting target/target combinations/ pharmacophoric combinations to cure Alzheimer's disease. We concentrated our efforts to find the ability of certain pharmacophoric elements to interfere with various enzymatic and/or receptor systems or to work as neuroprotective agents. These pharmacophoric elements may be proved to be promising leads for future multi-target anti-Alzheimer drug discovery programs. RESULTS: Anticholinesterase drugs were mentioned as the best treatment thus far. Additionally, impairments in the serotonergic, GABAergic, noradrenergic, dopaminergic, and glutaminergic and a few other pathways have all been linked to memory, speech, behavioral and other alterations in Alzheimer's disease. CONCLUSION: This includes the study of workable pharmacophoric groups/combinations, receptors/ enzymatic systems and related hypotheses to find the promising therapeutic lead compounds which could work as future anti-Alzheimer drugs. We discuss future work that would improve our understanding of this Disease.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Encéfalo/metabolismo
5.
Phytochemistry ; 205: 113503, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36356673

RESUMEN

Fourteen previously undescribed diterpenoids, including seven ent-pimarane-type diterpenoids and seven phytane-type diterpenes, together with five known ones, were isolated from the aerial parts of Sigesbeckia glabrescens. The structures and absolute configurations of undescribed compounds were elucidated based on extensive spectroscopic techniques, ECD calculations, Mo2(OAC)4-induced ECD, Rh2(OCOCF3)4-induced ECD, calculated 13C NMR, and chemical methods. In the anti-inflammatory bioassay, siegetalis H showed potent inhibitory effect on LPS-induced NO production in RAW264.7 murine macrophages with an IC50 value at 17.29 µM. Furthermore, siegetalis H suppressed the protein expression of iNOS and COX-2 in LPS-stimulated RAW264.7 cells. Mechanistically, siegetalis H suppressed the phosphorylation and degradation of IκBα, as well as the activation of the NF-κB signaling pathway. In addition, the AChE inhibition assay displayed that 3-O-acetyldarutigenol had a remarkable inhibitory effect against AChE with an IC50 value at 7.02 µM. Kinetic study on 3-O-acetyldarutigenol indicated that it acted as a mixed-type inhibitor, and the binding mode was explored by molecular docking.


Asunto(s)
Antiinflamatorios , Sigesbeckia , Ratones , Animales , Simulación del Acoplamiento Molecular , Antiinflamatorios/farmacología
6.
Mar Drugs ; 20(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36547927

RESUMEN

Aurantiochytrium is a heterotrophic marine microalga that has potential industrial applications. The main objectives of this study were to isolate an Aurantiochytrium strain from Sand Cay (Son Ca) Island, Vietnam, optimize its culture conditions, determine its nutritional composition, extract polyunsaturated fatty acids (PUFAs) in the free (FFA) and the alkyl ester (FAAE) forms, and evaluate the antioxidation and neuroprotection properties of the PUFAs. Aurantiochytrium sp. SC145 can be grown stably under laboratory conditions. Its culture conditions were optimized for a dry cell weight (DCW) of 31.18 g/L, with total lipids comprising 25.29%, proteins 7.93%, carbohydrates 15.21%, and carotenoid at 143.67 µg/L of DCW. The FAAEs and FFAs extracted from Aurantiochytrium sp. SC145 were rich in omega 3-6-9 fatty acids (40.73% and 44.00% of total fatty acids, respectively). No acute or subchronic oral toxicity was determined in mice fed with the PUFAs in FFA or FAAE forms at different doses over 90 days. Furthermore, the PUFAs in the FFA or FAAE forms and their main constituents of EPA, DHA, and ALA showed antioxidant and AChE inhibitory properties and neuroprotective activities against damage caused by H2O2- and amyloid-ß protein fragment 25-35 (Aß25-35)-induced C6 cells. These data suggest that PUFAs extracted from Aurantiochytrium sp. SC145 may be a potential therapeutic target for the treatment of neurodegenerative disorders.


Asunto(s)
Antioxidantes , Estramenopilos , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Arena , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Vietnam , Peróxido de Hidrógeno/metabolismo , Neuroprotección , Núcleo Familiar , Ácidos Grasos Insaturados/farmacología , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Estramenopilos/metabolismo , Ácidos Grasos no Esterificados/metabolismo
7.
Acta Chim Slov ; 69(3): 604-618, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36196807

RESUMEN

New mononuclear ternary transition metal complexes: [M(HL)(bipy)2]ClO4, (M: Mn(II) for 1, Ni(II) for 2), [M(HL)(bipy) (ClO4)], (M: Ni(II) for 3, Cu(II) for 4, Zn(II) for 5) with M(II), 2-[(E)-(hydroxyimino)methyl]-4-[(E)-phenyldiazenyl]phenol, H2L, and 2,2'-bipyridine were synthesized. The structures of the complexes were investigated by using various analytical, spectroscopic techniques such as elemental analysis, FTIR, UV-Vis, NMR, MALDI-TOF mass spectrometry, thermal analysis, and computational studies containing geometric optimizations and theoretical calculations of vibrations and electronic transitions. IR and thermal analysis data verifies the proposed structure of the complexes. The inhibition activities of the complexes against acetylcholinesterase (AChE) extracted from Ricania simulans adults and nymphs were examined and all the complexes were found to be active. Among the complexes studied, the most inhibition activity was exhibited by complex 5 with the lowest IC50 value (3.2±0.8) for AChE of adults, complex 3 with the lowest IC50 value (4.6±0.8) for AChE of nymphs.


Asunto(s)
Complejos de Coordinación , Compuestos Heterocíclicos , Elementos de Transición , 2,2'-Dipiridil/farmacología , Acetilcolinesterasa , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Iminas , Ligandos , Fenoles , Bases de Schiff/farmacología , Espectrofotometría Infrarroja , Elementos de Transición/química , Elementos de Transición/farmacología
8.
Comput Struct Biotechnol J ; 20: 2815-2830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765646

RESUMEN

The circadian rhythm is one of the most general and important rhythms in biological organisms. In this study, continuous 24-h video recordings showed that the cumulative movement distance and duration of the abalone, Haliotis discus hannai, reached their maximum values between 20:00-00:00, but both were significantly lower between 08:00-12:00 than at any other time of day or night (P < 0.05). To investigate the causes of these diel differences in abalone movement behavior, their cerebral ganglia were harvested at 00:00 (group D) and 12:00 (group L) to screen for differentially expressed proteins using tandem mass tagging (TMT) quantitative proteomics. Seventy-five significantly different proteins were identified in group D vs. group L. The differences in acetylcholinesterase (AchE) expression levels between day- and nighttime and the key role in the cholinergic nervous system received particular attention during the investigation. A cosine rhythm analysis found that the concentration of acetylcholine (Ach) and the expression levels of AchE tended to be low during the day and high at night, and high during the day and low at night, respectively. However, the rhythmicity of the diel expression levels of acetylcholine receptor (nAchR) appeared to be insignificant (P > 0.05). Following the injection of three different concentrations of neostigmine methylsulfate, as an AchE inhibitor, the concentration of Ach in the hemolymph, and the expression levels of nAchR in the cerebral ganglia increased significantly (P < 0.05). Four hours after drug injection, the cumulative movement distance and duration of abalones were significantly higher than those in the uninjected control group, and the group injected with saline (P < 0.05). The expression levels of the core diurnal clock Bmal1 over a 24-h period also tended to be high during the day and low at night. First, a co-immunoprecipitation assay demonstrated the binding between Bmal1 and AchE or nAchR. A dual-luciferase gene test and electrophoretic mobility shift assay showed that Bmal1 bound to the promoter regions of AchE and nAchR. Twenty-four hours after silencing the Bmal1 gene, the expression levels of AchE and nAchR decreased significantly compared to those of the dsEGFP and PBS control groups, further showing that Bmal1 mediates the cholinergic system to regulate the behavioral rhythm of abalone. These findings shed light on the endocrine mechanism regulating the rhythmic behavior of abalone, and provide a reference for understanding the life history adaptation strategies of nocturnal organisms and the proliferation and protection of bottom dwelling economically important organisms.

9.
Mol Ther Nucleic Acids ; 28: 114-123, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35402070

RESUMEN

Loss of cerebral cholinergic neurons and decreased levels of acetylcholine (ACh) are considered to be major factors causing cognitive dysfunction in Alzheimer's disease (AD). Abnormally elevated levels of acetylcholinesterase (AChE) resulting in decreased levels of ACh are common in AD patients; thus, AChE inhibitors (AChEIs) are widely used for the treatment of AD. In our previous work, we acquired DNA aptamers Ob1, Ob2, and Ob3 against human brain AChE from systematic evolution of ligands by exponential enrichment (SELEX). In this study, we investigated the effect of these aptamers on learning and memory abilities, as well as the underlying mechanism in a 5×FAD transgenic AD mouse model. Here, we showed that only aptamer Ob2 exhibits a good inhibitory effect on both mouse and human AChE activity. In addition, chronic treatment with aptamer Ob2 significantly improved cognitive ability of 5×FAD mice in the Morris water maze. Moreover, the mechanism of aptamer Ob2 in 5×FAD mice may be associated with its inhibition of AChE activity, alleviation of the levels of Aß by lowering the expression of ß-secretase (BACE1), and activation of astrocytes in the brains of 5×FAD mice. These results indicate that aptamer Ob2 exhibits potential as an effective AChEI for the treatment of AD.

10.
Talanta ; 243: 123284, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35255433

RESUMEN

Insufficient acetylcholine (ACh) can cause cognitive and memory dysfunction, clinically known as, Alzheimer's disease (AD). Acetylcholinesterase (AChE) can hydrolyze ACh into acetic acid and inactivate choline. Therefore, inhibiting the activity of AChE would help to improve the effectiveness of AD treatment. Currently, the methods for rapid screening of AChE inhibitors are limited. This study reports the application of AChE-immobilized magnetic nanoparticles as a drug screening tool to screen AChE inhibitors for natural products. First, AChE was immobilized on a surface of amino-modified magnetic nanoparticles using covalent binding and the AChE concentration, and the pH as well as time was optimized to obtain the maximum enzyme immobilization yield (61.4 µg/mg), and the kinetic model indicated that AChE-immobilized magnetic nanoparticles and the substrate had the high affinity and specificity. Then, a ligand fishing experiment was carried out using a mixed model of tacrine (an inhibitor of AChE) and caffeic acid (a non-inhibitor of AChE) to verify the specificity of the immobilized AChE, and the conditions for ligand fishing were further optimized. Finally, the optimized immobilized AChE was combined with UPLC-MS to screen for AChE inhibitors in Selaginella doederleinii Hieron extracts. Four compounds were confirmed to be potent AChE inhibitors. Among the four compounds, amentoflavone had a stronger AChE inhibitory effect than tacrine (positive control) with an IC50 of 0.73 ± 0.009 µmol/L. The results showed that AChE-functionalized magnetic nanoparticles can be used in the discovery of target drugs from complex matrices.


Asunto(s)
Nanopartículas , Selaginellaceae , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Cromatografía Liquida , Enzimas Inmovilizadas/química , Fenómenos Magnéticos , Selaginellaceae/química , Selaginellaceae/metabolismo , Espectrometría de Masas en Tándem
11.
J Fungi (Basel) ; 8(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35330234

RESUMEN

The secondary metabolites of Phaeosphaeria sp. LF5, an endophytic fungus with acetylcholinesterase (AChE) inhibitory activity isolated from Huperzia serrata, were investigated. Their structures and absolute configurations were elucidated by means of extensive spectroscopic data, including one- and two-dimensional nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) analyses, and calculations of electronic circular dichroism (ECD). A chemical study on the solid-cultured fungus LF5 resulted in 11 polyketide derivatives, which included three previously undescribed derivatives: aspilactonol I (4), 2-(1-hydroxyethyl)-6-methylisonicotinic acid (7), and 6,8-dihydroxy-3-(1'R, 2'R-dihydroxypropyl)-isocoumarin (9), and two new natural-source-derived aspilactonols (G, H) (2, 3). Moreover, the absolute configuration of de-O-methyldiaporthin (11) was identified for the first time. Compounds 4 and 11 exhibited inhibitory activity against AChE with half maximal inhibitory concentration (IC50) values of 6.26 and 21.18 µM, respectively. Aspilactonol I (4) is the first reported furanone AChE inhibitor (AChEI). The results indicated that Phaeosphaeria is a good source of polyketide derivatives. This study identified intriguing lead compounds for further research and development of new AChEIs.

12.
Eur J Med Chem ; 235: 114305, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35339839

RESUMEN

A series of sulfone analogs of donepezil were designed and synthesized as novel acetylcholinesterase (AChE) inhibitors with the potent inhibiting Aß aggregation and providing neuroprotective effects as potential modalities for Alzheimer's disease (AD). Most of the target compounds displayed effective inhibition of AChE, especially compound 24r which displayed powerful inhibitory activity (IC50 = 2.4 nM). Kinetic and docking studies indicated that compound 24r was a mixed-type inhibitor. Furthermore, in glyceraldehyde (GA)-exposed SH-SY5Y differentiated neuronal cells, compound 24r could potently inhibit AChE, reduce tau phosphorylation at S396 residue, provide neuroprotection by rescuing neuronal morphology and increasing cell viability. It was also found to reduce amyloid aggregation in the presence of AChE. In addition, compound 24r showed evident protections from mitochondrial membrane dysfunction and oxidative stress in okadaic acid-induced pharmacological models. Moreover, compound 24r exhibited more effective treatment prospects in vivo than donepezil, including a moderate blood-brain barrier permeability, a more potent AChE inhibitory activity and behavioral improvement in scopolamine-induced cognition-impaired mice model at a much lower dose. Collectively, compound 24r is a promising lead compound for further investigation to discovery and development of new anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Donepezilo/farmacología , Plomo/uso terapéutico , Ratones , Neuroprotección , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Relación Estructura-Actividad
13.
Curr Med Chem ; 28(29): 6045-6065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33538661

RESUMEN

BACKGROUND: The MAO enzyme is presented in the brain and peripheral tissues and is a significant enzyme that is responsible for the deamination of biogenic amines and thus the regulation of neurotransmitter levels. The reaction of these neurotransmitters with the MAO enzyme produces aldehyde and free amine. MAO enzyme consists of two isoforms, MAO-A and MAO-B, which are characterized by amino acid sequence, three-dimensional structure, substrate preference, and inhibitor selectivity. Dopamine, tyramine, and tryptamine are substrates of both MAO isoforms and MAO inhibitors such as clorgiline and selegiline, which are used as medications in neurodegenerative and neurological diseases. In particular, MAO-A inhibitors are used in the treatment of depression, while MAO-B inhibitors are used in the treatment of Parkinson's disease. It is also investigated whether MAO-B inhibitors are effective in the treatment of Alzheimer's disease. Nowadays, life expectancy has increased, as a result, neurodegenerative diseases such as Parkinson's and Alzheimer's disease have started to occur more frequently. The elderly population is increasing day by day. As a result of these common diseases in elderly people, these people are unable to do their jobs and need care. Therefore, these diseases have become a significant health problem in society. METHODS: In this study, review, inclusion, and exclusion criteria were used. Peer-reviewed research articles were searched. The quality of the examined articles was evaluated with standard tools. The information obtained was analyzed conceptually by using qualitative content analysis methodology. RESULTS: One hundred and five papers were included in the review. The current MAO-B inhibitors and their usage areas are discussed together with the structures of the drugs; also, their possible effects in Alzheimer's and Parkinson's treatment are evaluated. In addition, different articles have been compiled in which structures such as arylalkylamines, chalcones, benzoquinone, benzoxazinone, and chromen are substituted with various functional groups and aromatic rings, along with thestructures of 44 different compounds that have recently been developed and their inhibitory effects on MAO-B enzyme. As a result, the structure required for MAO-B inhibition and SAR studies is discussed. CONCLUSION: Many studies demonstrate that MAO-B activity increases with age in brain tissue, cerebrospinal fluid (CSF), and platelets in Alzheimer's patients. This suggests that MAO-B inhibitor drugs, which may be effective in the treatment of Parkinson's disease, may also be effective in the treatment of Alzheimer's disease. This article was written to explain the multifaceted MAO-B inhibitor molecules.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Antidepresivos/uso terapéutico , Humanos , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
14.
Curr Neuropharmacol ; 19(9): 1606-1616, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33441068

RESUMEN

Crocus sativus L. (saffron) appears to own neuroprotective effects on cognitive impairment in patients with Alzheimer's disease (AD). The purpose of this work is to review evidence and mechanisms of saffron-induced therapeutic outcomes and measureable cognitive benefits in AD. The literature was reviewed, and preclinical and clinical studies were identified. In vitro and in vivo preclinical studies were selected according to these criteria: 1) development of saffron pharmacological profile on biological or biophysical endpoints; 2) evaluation of saffron efficacy using animal screens as an AD model, and 3) duration of the studies of at least 3 months. As for the clinical studies, the selection criteria included: 1) patients aged ≥ 60, 2) AD diagnosis according to National Institute on Aging-Alzheimer's Association (NIAAA) criteria, and 3) appropriate procedures to assess cognitive, functional, and clinical status. A total of 1477 studies published until November 2020 were identified during an initial phase, of which 24 met the inclusion criteria and were selected for this review. Seventeen in vitro and in vivo preclinical studies have described the efficacy of saffron on cognitive impairment in animal models of AD, highlighting that crocin appears to be able to regulate glutamate levels, reduce oxidative stress, and modulate Aß and tau protein aggregation. Only four clinical studies have indicated that the effects of saffron on cognitive impairment were not different from those produced by donepezil and memantine and that it had a better safety profile. Saffron and its compounds should be further investigated in order to consider them a safer alternative in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Crocus , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Disfunción Cognitiva/tratamiento farmacológico , Donepezilo , Humanos , Memantina
15.
Eur J Med Chem ; 211: 113067, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33338868

RESUMEN

Seven tacrine/CHR21 conjugates have been designed and synthesized. Compound 8-7 was confirmed as the most active AChE inhibitor with IC50 value of 5.8 ± 1.4 nM, which was 7.72-fold stronger than tacrine. It was also shown as a strong BuChE inhibitor (IC50 value of 3.7 ± 1.3 nM). 8-7 was clearly highlighted not only as an excellent ChEs inhibitor, but also as a good modulator on protein expression of AChE, p53, Bax, Bcl-2, LC3, p62, and ULK, indicating its functions against programmed cell apoptosis and decrease of autophagy. 8-7 significantly reversed the glutamate-induced dysfunctions including excessive calcium influx and release from internal organelles, overproduction of nitric oxide (NO) and Aß high molecular weight oligomer. This compound can penetrate blood-brain barrier (BBB). The in vivo hepatotoxicity assay indicated that 8-7 was much less toxic than tacrine. Altogether, these data strongly support that 8-7 is a potential multitarget-directed ligand (MTDL) for treating Alzheimer's disease (AD).


Asunto(s)
Acetilcolinesterasa/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Iridoides/uso terapéutico , Tacrina/uso terapéutico , Acetilcolinesterasa/farmacología , Enfermedad de Alzheimer/patología , Autofagia , Diseño de Fármacos , Humanos , Iridoides/farmacología , Estructura Molecular , Relación Estructura-Actividad , Tacrina/farmacología
16.
Bioorg Med Chem ; 30: 115940, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33340937

RESUMEN

In the present work, a novel series of pyridinethiazole bearing benzylpiperidine hybrids were designed and synthesized as dual-target inhibitors of GSK-3ß/AChE. Among them, GD29 was the most promising candidate, with an IC50 value of 0.3 µM for hAChE and an IC50 value of 0.003 µM for hGSK-3ß, respectively. The compounds exhibited good drug-like properties with optimal inhibitory enzyme activities. Moreover, GD29 showed anti-inflammatory properties at micromolar concentrations and displayed interesting neuroprotective profiles in an in vitro model of oxidative stress-induced neuronal death. Notably, the compounds also exhibited good permeability across the blood-brain-barrier (BBB) both in vitro. Central cholinomimetic activity was confirmed using a scopolamine-induced cognition impairment model in Institute of Cancer Research (ICR) mice upon oral administration. The current work identified optimized compounds and explored the therapeutic potential of glycogen synthase kinase 3/cholinesterase inhibition for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Fármacos Neuroprotectores/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Tiazoles/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Células Tumorales Cultivadas
17.
Vet Parasitol ; 286: 109247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32987229

RESUMEN

Adonis coerulea Maxim. presents acaricidal activity in vitro and in vivo, and inhibits AChE and other enzymes activities. However, the active compounds against Psoroptes cuniculi were still unclear. AChE, a common acaricidal and insecticidal target, plays a key role in neural conduction of mites. In this study, using surface plasmon resonance (SPR) technology, AChE was used as a target to capture the compounds from A. coerulea methanol extract (MEAC). After calculating the affinity with molecular docking, the inhibitory effect of compounds against AChE was studied. Results showed that 27 compounds were captured by AChE and identified from MEAC by LC-MS/MS. Among of these compounds, eight compounds presented the high affinity with AChE and high scores in molecular docking assay, especially for silibinin (-12.19 kcal/mol) and vitexin (-11.72 kcal/mol). Further studies showed that although these compounds have the weak cytotoxicity against C6/36 cells, silibinin, quercetin and corilagin could inhibit AChE activity with IC50 values of 40.11 µg/mL, 46.15 µg/mL and 50.98 µg/mL, respectively. These results indicated that silibinin, quercetin and corilagin may be responsible for AChE inhibition which contributes to the acaricidal properties of A coerulea. This study lays the foundation for developing sensitive and sustainability methods for active compound detection from plants.


Asunto(s)
Acaricidas/farmacología , Adonis/química , Inhibidores de la Colinesterasa/farmacología , Extractos Vegetales/farmacología , Psoroptidae/efectos de los fármacos , Animales , Inhibidores de la Colinesterasa/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química
18.
Polymers (Basel) ; 12(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32532124

RESUMEN

Chitin and protein-containing marine by-products (CPCMBPs), including crab shells, squid pens, and shrimp shells, were investigated as the sole carbon/nitrogen (C/N) source for prodigiosin (PG) production by Serratia marcescens TNU01 in a 250 mL Erlenmeyer flask and a 10 L bioreactor system. Among the used C/N source of CPCMBPs, squid pens powder (SPP) showed the most optimum PG productivity. Different ratios of chitin/protein combination were also used as the C/N sources for PG production. With a similar chitin/protein ratio (4/6) of squid pens, a significant PG productivity was achieved when the chitin/protein ratios were controlled in the range of 3/7-4/6. Maximum PG yield (3450 mg/L) by S. marcescens TNU01 was achieved in the bioreactor system containing 3 L medium of 1.75% SPP, 0.03% K2HPO4, and 0.05% MgSO4 at 25 °C for 12 h in dark. The results of in vitro bioassays reveal that the purified PG possesses acetylcholinesterase inhibitory activity and antioxidant as well as anticancer activities. This study suggests that squid pens may have the potential to be used for cost effective production of bioactive PG at a large-scale.

19.
Zhongguo Zhong Yao Za Zhi ; 45(10): 2431-2438, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32495603

RESUMEN

This research is to predict anti-Alzheimer's disease active constituents on the target of acetylcholinesterase(AChE) from Glycyrrhizae Radix et Rhizoma with the help of pharmacophore and molecular docking. AChE ligand-based pharmacophore model was set up and the molecular library of the constituents from Glycyrrhizae Radix et Rhizoma were established by collecting literature. Then the constituents from Glycyrrhizae Radix et Rhizoma were screen for the potential AChE inhibitory potency in silico through matching with the best pharmacophore model. The flexible docking was used to evaluate the interactions between compounds screened from pharmacophore model and AChE protein(PDB ID:4 EY7). The interactions were expressed including but not limited to CDOCKER interaction energy, hydrogen bonds and non-bonding interactions. The molecular library of Glycyrrhizae Radix et Rhizoma contains 44 chemical constituents. As for the pharmacophore model, six kinds of potential AChE inhibitory constituents from Glycyrrhizae Radix et Rhizoma were considered to be the promising compounds according to the results of searching 3 D database of pharmacophore model. The molecular docking was possessed and the interaction patterns were given to show the detail interactions. The compounds screening from the pharmacophore model were consistent with the existing studies to some degree, indicating that the virtual screen protocols of AChE inhibitory constituents from Glycyrrhizae Radix et Rhizoma based on pharmacophore and molecular docking was reliable.


Asunto(s)
Medicamentos Herbarios Chinos , Glycyrrhiza , Triterpenos , Simulación del Acoplamiento Molecular , Rizoma
20.
Mini Rev Med Chem ; 20(11): 1042-1060, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31660824

RESUMEN

BACKGROUND: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are known to be serine hydrolase enzymes responsible for the hydrolysis of acetylcholine (ACh), which is a significant neurotransmitter for regulation of cognition in animals. Inhibition of cholinesterases is an effective method to curb Alzheimer's disease, a progressive and fatal neurological disorder. OBJECTIVE: In this study, 30 new hydrazone derivatives were synthesized. Then we evaluated their anticholinesterase activity of compounds. We also tried to get insights into binding interactions of the synthesized compounds in the active site of both enzymes by using molecular docking approach. METHODS: The compounds were synthesized by the reaction of various substituted/nonsubstituted benzaldehydes with 6-(substitute/nonsubstituephenyl)-3(2H)-pyridazinone-2-yl propiyohydrazide. Anticholinesterase activity of the compounds was determined using Ellman's method. Molecular docking studies were done by using the ADT package version 1.5.6rc3 and showed by Maestro. RMSD values were obtained using Lamarckian Genetic Algorithm and scoring function of AutoDock 4.2 release 4.2.5.1 software. RESULTS: The activities of the compounds were compared with galantamine as cholinesterase enzyme inhibitor, where some of the compounds showed higher BChE inhibitory activity than galantamine. Compound F111 was shown to be the best BChE inhibitor effective in 50 µM dose, providing 89.43% inhibition of BChE (IC50=4.27±0.36 µM). CONCLUSION: This study supports that novel hydrazone derivates may be used for the development of new BChE inhibitory agents.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Caballos , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Estructura Molecular , Programas Informáticos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA