Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomedicines ; 9(12)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944619

RESUMEN

Detailed mechanism(s) of the beneficial effects of renal denervation (RDN) on the course of heart failure (HF) remain unclear. The study aimed to evaluate renal vascular responsiveness to angiotensin II (ANG II) and to characterize ANG II type 1 (AT1) and type 2 (AT2) receptors in the kidney of Ren-2 transgenic rats (TGR), a model of ANG II-dependent hypertension. HF was induced by volume overload using aorto-caval fistula (ACF). The studies were performed two weeks after RDN (three weeks after the creation of ACF), i.e., when non-denervated ACF TGR enter the decompensation phase of HF whereas those after RDN are still in the compensation phase. We found that ACF TGR showed lower renal blood flow (RBF) and its exaggerated response to intrarenal ANG II (8 ng); RDN further augmented this responsiveness. We found that all ANG II receptors in the kidney cortex were of the AT1 subtype. ANG II receptor binding characteristics in the renal cortex did not significantly differ between experimental groups, hence AT1 alterations are not responsible for renal vascular hyperresponsiveness to ANG II in ACF TGR, denervated or not. In conclusion, maintained renal AT1 receptor binding combined with elevated ANG II levels and renal vascular hyperresponsiveness to ANG II in ACF TGR influence renal hemodynamics and tubular reabsorption and lead to renal dysfunction in the high-output HF model. Since RDN did not attenuate the RBF decrease and enhanced renal vascular responsiveness to ANG II, the beneficial actions of RDN on HF-related mortality are probably not dominantly mediated by renal mechanism(s).

2.
Artículo en Inglés | MEDLINE | ID: mdl-33166686

RESUMEN

Angiotensin II (ANG II) is part of the renin-angiotensin system (RAS) in vertebrates and exert vasoconstriction in all species studied. The present study examines the vasopressor effect of ANG II in the ball python (Python regius), and examines whether ANG II exert its effect through direct angiotensin receptors or through an activation of α-adrenergic receptors. The studies were conducted in snakes with chronic arterial catheters that had recovered from anesthesia. In addition to demonstrating a clear and pronounced dose-dependent rise in arterial blood pressure upon repeated injections of boluses with ANG II (0.001-1 µg/kg), we demonstrate that the pressor response persisted following α-adrenergic blockade using the α-adrenergic antagonist phentolamine (2.5 mg/kg). Unfortunately, it proved impossible to block the ANG receptors using losartan (1, 3 or even 10 mg/kg). The pressor response to ANG II was associated with a significant rise in heart rate at the higher dosages, pointing to a resetting of the barostatic mechanism for heart rate regulation. The responses were similar in fasting and digesting pythons despite the expected rise in baseline values for blood pressure and heart rate of the digesting snakes.


Asunto(s)
Angiotensina II/fisiología , Boidae/fisiología , Animales , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología
3.
BMC Cardiovasc Disord ; 20(1): 99, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32106816

RESUMEN

BACKGROUND: Few studies examined the effect of long-acting nitrates on renal function in chronic heart failure (CHF). Thus, we aimed to investigate the effect of long-acting nitrate on the expression of adrenoceptors (AR) and angiotensin II receptor (ATR) subtypes of the renal cortex, in rats with myocardial infarction-induced CHF. METHODS: Rats were randomly divided into the following groups: control, sham-operated, CHF, low- and high-dose nitrate, positive drug control (olmesartan), and high-dose of long-acting nitrate + olmesartan. Ultrasound echocardiography markers were compared, and the levels of AR subtypes, AT1R, and AT2R were measured using reverse transcription-polymerase chain reaction and western blot analysis. Histopathology of the kidney was determined on hematoxylin and eosin-stained sections. RESULTS: CHF significantly increased plasma renin activity (PRA) and angiotensin II levels, upregulated AT1R expression and downregulated α1A-, ß1-, ß2-AR, and AT2R expression compared to the sham control. High-dose nitrate or olmesartan alone, and especially in combination, decreased the levels of PRA and angiotensin II and downregulated the CHF-induced expression of AT1R, α1A-, ß1-, and ß2-AR, and AT2R. CHF resulted in significant impairment of the renal tissue, including inflammatory cells infiltration to the tubular interstitium and surrounding the renal glomerulus, and tubular necrosis, which was alleviated in all treatment groups to different degrees. CONCLUSIONS: Long-acting nitrates could reverse CHF-induced changes in AR and ATR subtypes in the kidney, and improve cardiac function to protect renal function. Compared with monotherapy, the combination of nitrates and olmesartan shows more significant benefits in regulating AR and ATR subtypes.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Dinitrato de Isosorbide/análogos & derivados , Corteza Renal/efectos de los fármacos , Infarto del Miocardio/complicaciones , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores de Angiotensina/metabolismo , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Quimioterapia Combinada , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Imidazoles/farmacología , Dinitrato de Isosorbide/farmacología , Corteza Renal/metabolismo , Corteza Renal/fisiopatología , Masculino , Ratas Wistar , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta/genética , Receptores de Angiotensina/genética , Sistema Renina-Angiotensina/efectos de los fármacos , Tetrazoles/farmacología , Factores de Tiempo
4.
J Mol Cell Cardiol ; 125: 117-128, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30193956

RESUMEN

AIMS: Angiotension II (Ang II) plays a central role in the pathogenesis of renin-angiotensin-aldosterone system (RAAS)-induced heart failure. Mst1 exerts its function in cardiomyocytes subjected to pathological stimuli via inhibiting autophagy and aggravating apoptosis, but its role in RAAS-mediated cardiac injury is still unknown. Here, we aimed to determine whether cardiomyocyte-specific Mst1 knockout can alleviate Ang II-induced cardiac injury by improving cardiomyocyte autophagy and whether these functions depend on Ang II receptors. RESULTS: Mst1 knockout alleviated Ang II-induced heart failure, without affecting blood pressure and compensatory concentric hypertrophy. Mst1 specific knockout improved the effects of Ang II on cardiomyocyte autophagy, as evidenced by further increased LC3-II expression and decreased P62 expression. More typical autophagosomes accompanied by less damaged mitochondria were also observed by electron microscopy in Ang II-treated Mst1Δ/Δ mice. In vitro, Mst1 knockdown promoted cardiomyocyte autophagic flux, as demonstrated by more GFP-mRFP-LC3 puncta per cell. Increased LC3-II and decreased P62 expression both in the presence and absence of chloroquine were observed in Mst1 knockdown cardiomyocytes administered with Ang II. Treatment with 3-MA, an inhibitor of autophagy, abolished the beneficial effects of Mst1 knockout against Ang II-induced cardiac dysfunction. The compensatory effects of Ang II on upregulated autophagy were associated with Mst1 inhibition. Interestingly, the knockdown or antagonization of AT1R inhibited cardiomyocyte autophagy, which may represent a threat to cardiac function. Importantly, Mst1 knockout consistently enhanced cardiomyocyte autophagy following the knockdown or blocking of AT1R and AT2R. CONCLUSION: Cardiomyocyte-specific Mst1 knockout alleviates Ang II-induced cardiac injury by enhancing cardiomyocyte autophagy. Mst1 inhibition may counteract the undesirable effects of Ang II receptors blockage on cardiomyocyte autophagy and represent a promising complementary treatment strategy against Ang II-induced cardiac injury.


Asunto(s)
Angiotensina II/toxicidad , Cardiomiopatías/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Receptores de Angiotensina/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/fisiología , Western Blotting , Cardiomiopatías/inducido químicamente , Células Cultivadas , Factor de Crecimiento de Hepatocito/genética , Ratones , Ratones Noqueados , Microscopía Fluorescente , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Proteínas Proto-Oncogénicas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Angiotensina/genética
5.
Arch Biochem Biophys ; 593: 38-49, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26850364

RESUMEN

Angiotensin II (Ang II) is an important mammalian neurohormone involved in reninangiotensin system. Ang II is produced both constitutively and locally by RAS systems, including white fat adipocytes. The influence of Ang II on adipocytes is complex, affecting different systems of signal transduction from early Са(2+) responses to cell proliferation and differentiation, triglyceride accumulation, expression of adipokine-encoding genes and adipokine secretion. It is known that white fat adipocytes express all RAS components and Ang II receptors (АТ1 and АТ2). The current work was carried out with the primary white adipocytes culture, and Са(2+) signaling pathways activated by Ang II were investigated using fluorescent microscopy. Са(2+)-oscillations and transient responses of differentiated adipocytes to Ang II were registered in cells with both small and multiple lipid inclusions. Using inhibitory analysis and selective antagonists, we now show that Ang II initiates periodic Са(2+)-oscillations and transient responses by activating АТ1 and АТ2 receptors and involving branched signaling cascades: 1) Ang II → Gq → PLC → IP3 → IP3Rs → Ca(2+) 2) Gßγ → PI3Kγ → PKB 3) PKB → eNOS → NO → PKG 4) CD38 → cADPR → RyRs → Ca(2+) In these cascades, AT1 receptors play the leading role. The results of the present work open a perspective of using Ang II for correction of signal resistance of adipocytes often observed during obesity and type 2 diabetes.


Asunto(s)
Adipocitos Blancos/metabolismo , Angiotensina II/metabolismo , Señalización del Calcio , Adipocitos Blancos/citología , Adipocitos Blancos/efectos de los fármacos , Angiotensina II/farmacología , Animales , Calcio/metabolismo , Diferenciación Celular , Gotas Lipídicas/ultraestructura , Ratones , Cultivo Primario de Células , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo
6.
Am J Physiol Renal Physiol ; 306(8): F855-63, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24523384

RESUMEN

The physiological roles of ANG-(3-4) (Val-Tyr), a potent ANG II-derived peptide, remain largely unknown. The present study 1)investigates whether ANG-(3-4) modulates ouabain-resistant Na(+)-ATPase resident in proximal tubule cells and 2) verifies whether its possible action on pumping activity, considered the fine tuner of Na(+) reabsorption in this nephron segment, depends on blood pressure. ANG-(3-4) inhibited Na(+)-ATPase activity in membranes of spontaneously hypertensive rats (SHR) at nanomolar concentrations, with no effect in Wistar-Kyoto (WKY) rats or on Na(+)-K(+)-ATPase. PD123319 (10(-7) M) and PKA(5-24) (10(-6) M), an AT2 receptor (AT2R) antagonist and a specific PKA inhibitor, respectively, abrogated this inhibition, indicating that AT2R and PKA are central in this pathway. Despite the lack of effect of ANG-(3-4) when assayed alone in WKY rats, the peptide (10(-8) M) completely blocked stimulation of Na(+)-ATPase induced by 10(-10) M ANG II in normotensive rats through a mechanism that also involves AT2R and PKA. Tubular membranes from WKY rats had higher levels of AT2R/AT1R heterodimers, which remain associated in 10(-10) M ANG II and dissociate to a very low dimerization state upon addition of 10(-8) M ANG-(3-4). This lower level of heterodimers was that found in SHR, and heterodimers did not dissociate when the same concentration of ANG-(3-4) was present. Oral administration of ANG-(3-4) (50 mg/kg body mass) increased urinary Na(+) concentration and urinary Na(+) excretion with a simultaneous decrease in systolic arterial pressure in SHR, but not in WKY rats. Thus the influence of ANG-(3-4) on Na(+) transport and its hypotensive action depend on receptor association and on blood pressure.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas de Transporte de Catión/antagonistas & inhibidores , Dipéptidos/farmacología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Hipertensión/fisiopatología , Imidazoles/farmacología , Túbulos Renales Proximales/efectos de los fármacos , Ouabaína/farmacología , Piridinas/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 2/efectos de los fármacos , Receptor de Angiotensina Tipo 2/fisiología , Sodio/orina , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA