Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.522
Filtrar
1.
BMC Genomics ; 25(1): 749, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090531

RESUMEN

BACKGROUND: Abscisic acid (ABA) plays a crucial role in seed dormancy, germination, and growth, as well as in regulating plant responses to environmental stresses during plant growth and development. However, detailed information about the PYL-PP2C-SnRK2s family, a central component of the ABA signaling pathway, is not known in pitaya. RESULTS: In this study, we identified 19 pyrabactin resistance-likes (PYLs), 70 type 2 C protein phosphatases (PP2Cs), and 14 SNF1-related protein kinase 2s (SnRK2s) from pitaya. In pitaya, tandem duplication was the primary mechanism for amplifying the PYL-PP2C-SnRK2s family. Co-linearity analysis revealed more homologous PYL-PP2C-SnRK2s gene pairs located in collinear blocks between pitaya and Beta vulgaris L. than that between pitaya and Arabidopsis. Transcriptome analysis showed that the PYL-PP2C-SnRK2s gene family plays a role in pitaya's response to infection by N. dimidiatum. By spraying ABA on pitaya and subsequently inoculating it with N. dimidiatum, we conducted qRT-PCR experiments to observe the response of the PYL-PP2C-SnRK2s gene family and disease resistance-related genes to ABA. These treatments significantly enhanced pitaya's resistance to pitaya canker. Further protein interaction network analysis helped us identify five key PYLs genes that were upregulated during the interaction between pitaya and N. dimidiatum, and their expression patterns were verified by qRT-PCR. Subcellular localization analysis revealed that the PYL (Hp1879) gene is primarily distributed in the nucleus. CONCLUSION: This study enhances our understanding of the response of PYL-PP2C-SnRK2s to ABA and also offers a new perspective on pitaya disease resistance.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Filogenia , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Familia de Multigenes , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética
2.
Plant Physiol Biochem ; 215: 108970, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39094479

RESUMEN

The LED Blue Light (LBL) (450 nm) effect on hormones levels and on jasmonates (JAs) metabolism in oranges was investigated. The quantum flux (2 days, 60 µmol m-2. s-1) was chosen for its efficacy in reducing postharvest rot caused by this crop's main postharvest phytopathogenic fungus (Penicillium digitatum). The analysis of abscisic (ABA), salicylic (SA) and indole-3-acetic (IAA) acids, and of JAs-related metabolites, revealed that LBL modifies all studied metabolites and had major effects on JAs levels, mainly on jasmonic acid (JA) and its precursor cis-(+)-12-oxo-phytodienoic acid (OPDA). This agrees with the up-regulation of the genes participating in their synthesis. Results highlight the relevance of CsLOX1 and CsLOX5, and the contribution of CsAOC3, in the LBL-induced OPDA biosynthesis, whereas CsOPR2, CsACX1 and CsACX3 would play a part in the synthesis of JA from OPDA. Data also suggest that the applied LBL quantum flux favors fruit JA perception by increasing the expression of the coronatine insensitive 1 (COI1) receptor; and signaling by down-regulating abundant CsJAZ negative regulators. Differences in OPDA and JA between the LBL-treated oranges and their control fruit left in the dark disappeared after shifting the LBL-treated oranges to darkness for 3 more days. However, the LBL and darkness combination slightly increased IAA and SA contents.

3.
J Integr Plant Biol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109941

RESUMEN

Salinization poses a significant challenge in agriculture, exacerbated by anthropogenic global warming. Biostimulants, derived from living microorganisms or natural extracts, have emerged as valuable tools for conventional and organic agriculture. However, our understanding of the molecular mechanisms underlying the effects of biostimulants is very limited, especially in crops under real cultivation conditions. In this study, we adopted an integrative approach to investigate the effectiveness of the combined application of plant growth-promoting bacterium (Bacillus megaterium strain BM08) and a non-microbial biostimulant under control conditions (normal watering) and salt stress. After confirming the yield increase under both conditions, we investigated the molecular mechanisms underlying the observed effect by measuring a number of physiological parameters (i.e., lipid peroxidation, antioxidants, chlorophylls, total phenolics and phytohormone content), as well as RNA sequencing and primary metabolite analyses. Our findings reveal that the combined effect of the microbial and non-microbial biostimulants led to a decrease in the antioxidant response and an up-regulation of genes involved in cytokinin biosynthesis under salt stress conditions. This, in turn, resulted in a higher concentration of the bioactive cytokinin, isopentenyladenosine, in roots and leaves and an increase in γ-aminobutyric acid, a non-proteic amino acid related to abiotic stress responses. In addition, we observed a decrease in malic acid, along with an abscisic acid (ABA)-independent up-regulation of SR-kinases, a family of protein kinases associated with abiotic stress responses. Furthermore, we observed that the single application of the non-microbial biostimulant triggers an ABA-dependent response under salt stress; however, when combined with the microbial biostimulant, it potentiated the mechanisms triggered by the BM08 bacterial strain. This comprehensive investigation shows that the combination of two biostimulants is able to elicit a cytokinin-dependent response that may explain the observed yield increase under salt stress conditions.

4.
J Plant Physiol ; 302: 154316, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39098091

RESUMEN

ABA-insensitive 5 (ABI5) belongs to the basic leucine zipper class of transcription factors and is named for being the fifth identified Arabidopsis mutant unresponsive to ABA. To understand the influence of ABI5 in its active state on downstream gene expression and plant growth and development, we overexpressed the full-length ABI5 (A.t.MX-4) and the active forms of ABI5 with deleted transcriptional repression domains (A.t.MX-1, A.t.MX-2, and A.t.MX-3). Compared with the wild type, A.t.MX-1, A.t.MX-2, and A.t.MX-3 exhibited an increase in rosette leaf number and size, earlier flowering, increased thousand-seed weight, and significantly enhanced drought resistance. Thirty-five upregulated/downregulated proteins in the A.t.MX-1 were identified by proteomic analysis, and these proteins were involved in ABA biosynthesis and degradation, abiotic stress, fatty acid synthesis, and energy metabolism. These proteins participate in the regulation of plant drought resistance, flowering timing, and seed size at the levels of transcription and post-translational modification.

5.
Plant J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949092

RESUMEN

The plant hormone abscisic acid (ABA) regulates essential processes in plant development and responsiveness to abiotic and biotic stresses. ABA perception triggers a post-translational signaling cascade that elicits the ABA gene regulatory network (GRN), encompassing hundreds of transcription factors (TFs) and thousands of transcribed genes. To further our knowledge of this GRN, we performed an RNA-seq time series experiment consisting of 14 time points in the 16 h following a one-time ABA treatment of 5-week-old Arabidopsis rosettes. During this time course, ABA rapidly changed transcription levels of 7151 genes, which were partitioned into 44 coexpressed modules that carry out diverse biological functions. We integrated our time-series data with publicly available TF-binding site data, motif data, and RNA-seq data of plants inhibited in translation, and predicted (i) which TFs regulate the different coexpression clusters, (ii) which TFs contribute the most to target gene amplitude, (iii) timing of engagement of different TFs in the ABA GRN, and (iv) hierarchical position of TFs and their targets in the multi-tiered ABA GRN. The ABA GRN was found to be highly interconnected and regulated at different amplitudes and timing by a wide variety of TFs, of which the bZIP family was most prominent, and upregulation of genes encompassed more TFs than downregulation. We validated our network models in silico with additional public TF-binding site data and transcription data of selected TF mutants. Finally, using a drought assay we found that the Trihelix TF GT3a is likely an ABA-induced positive regulator of drought tolerance.

6.
Front Plant Sci ; 15: 1417632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966139

RESUMEN

Introduction: Abscisic acid (ABA) can negatively regulate seed germination, but the mechanisms of ABA-mediated metabolism modulation are not well understood. Moreover, it remains unclear whether metabolic pathways vary with the different tissue parts of the embryo, such as the radicle, hypocotyl and cotyledon. Methods: In this report, we performed the first comprehensive metabolome analysis of the radicle and hypocotyl + cotyledon in Pinus koraiensis seeds in response to ABA treatment during germination. Results and discussion: Metabolome profiling showed that following ABA treatment, 67 significantly differentially accumulated metabolites in the embryo were closely associated with pyrimidine metabolism, phenylalanine metabolism, cysteine and methionine metabolism, galactose metabolism, terpenoid backbone biosynthesis, and glutathione metabolism. Meanwhile, 62 metabolites in the hypocotyl + cotyledon were primarily involved in glycerophospholipid metabolism and glycolysis/gluconeogenesis. We can conclude that ABA may inhibit Korean pine seed germination primarily by disrupting the biosynthesis of certain plant hormones mediated by cysteine and methionine metabolism and terpenoid backbone biosynthesis, as well as reducing the reactive oxygen species scavenging ability regulated by glutathione metabolism and shikimate pathway in radicle. ABA may strongly disrupt the structure and function of cellular membranes due to alterations in glycerophospholipid metabolism, and weaken glycolysis/gluconeogenesis in the hypocotyl + cotyledon, both of which are major contributors to ABA-mediated inhibition of seed germination. These results highlight that the spatial modulation of metabolic pathways in Pinus koraiensis seeds underlies the germination response to ABA.

7.
J Plant Physiol ; 301: 154301, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38968782

RESUMEN

Abscisic acid (ABA) and gibberellin (GA) are major regulators of seed dormancy, an adaptive trait closely associated with preharvest sprouting. This study examined transcriptional regulation of ABA and GA metabolism genes and modulation of ABA and GA levels in seeds of barley genotypes exhibiting a range of dormancy phenotype. We observed a very strong negative correlation between genetic variation in seed germination and embryonic ABA level (r = 0.85), which is regulated by transcriptional modulation of HvNCED1 and/or HvCYP707A genes. A strong positive correlation was evident between variation in seed germination and GA level (r = 0.64), mediated via transcriptional regulation of GA biosynthesis genes, HvGA20ox2 and/or HvGA3oxs, and GA catabolism genes, HvGA2ox3 and/or HvGA3ox6. Modulation of the ABA and GA levels in the genotypes led to the prevalence of ABA to GA level ratio that exhibited a very strong negative correlation (r = 0.84) with seed germination, highlighting the importance of a shift in ABA/GA ratio in determining genetic variation of dormancy in barley seeds. Our results overall show that transcriptional regulation of specific ABA and GA metabolism genes underlies genetic variation in ABA/GA ratio and seed dormancy, reflecting the potential use of these genes as molecular tools for enhancing preharvest sprouting resistance in barley.

8.
Plants (Basel) ; 13(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065452

RESUMEN

Some citrus orchards in China often experience nitrogen (N) deficiency. For the first time, targeted metabolomics was used to examine N-deficient effects on hormones in sweet orange (Citrus sinensis (L.) Osbeck cv. Xuegan) leaves and roots. The purpose was to validate the hypothesis that hormones play a role in N deficiency tolerance by regulating root/shoot dry weight ratio (R/S), root system architecture (RSA), and leaf and root senescence. N deficiency-induced decreases in gibberellins and indole-3-acetic acid (IAA) levels and increases in cis(+)-12-oxophytodienoic acid (OPDA) levels, ethylene production, and salicylic acid (SA) biosynthesis might contribute to reduced growth and accelerated senescence in leaves. The increased ethylene formation in N-deficient leaves might be caused by increased 1-aminocyclopropanecarboxylic acid and OPDA and decreased abscisic acid (ABA). N deficiency increased R/S, altered RSA, and delayed root senescence by lowering cytokinins, jasmonic acid, OPDA, and ABA levels and ethylene and SA biosynthesis, increasing 5-deoxystrigol levels, and maintaining IAA and gibberellin homeostasis. The unchanged IAA concentration in N-deficient roots involved increased leaf-to-root IAA transport. The different responses of leaf and root hormones to N deficiency might be involved in the regulation of R/S, RSA, and leaf and root senescence, thus improving N use efficiency, N remobilization efficiency, and the ability to acquire N, and hence conferring N deficiency tolerance.

9.
Plants (Basel) ; 13(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065528

RESUMEN

Plant growth regulators (PGRs) play a vital role in the induction of morphogenesis in vitro. Synthetic PGRs are commonly used to induce organogenesis and somatic embryogenesis from various explants, while natural substances are rarely utilized. This study aimed to enhance the regenerative response in Nicotiana tabacum leaf explants using Tulsi (Ocimum sanctum) leaf extract and to elucidate the biochemical interactions during modulation of endogenous plant growth regulators, including indole-3-acetic acid (IAA), abscisic acid (ABA), zeatin, and 6-(γ, γ-dimethylallylamino) purine (2iP). Tulsi leaf extract significantly improved shoot production through interactions between endogenous hormones and those present in the extract, which enhanced stress mitigation. The 20% Tulsi leaf extract treatment produced significantly more shoots than the control, coinciding with increased endogenous IAA and zeatin levels starting on day 10 in culture. Furthermore, ABA and zeatin concentrations increased on days 15 and 25, respectively, in the 20% Tulsi extract treatment, suggesting their role in the induction of somatic embryo-like structures. ABA likely acts as an activator of stress responses, encouraging the development of these structures. Additionally, 2iP was involved in the induction of both forms of regeneration in the 10% and 20% extract treatments, especially in combination with ABA. These results suggest that Tulsi leaf extract holds promising potential as a natural supplement for increasing plant regeneration in vitro and advancing our understanding of how natural extracts of plant origin can be harnessed to optimize plant regeneration processes in vitro.

10.
Curr Opin Plant Biol ; 81: 102589, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955094

RESUMEN

Inflorescence architecture is highly variable across plant lineages yet is critical for facilitating reproductive success. The capitulum-type inflorescence of the Asteraceae is marked as a key morphological innovation that preceded the family's diversification and expansion. Despite its evolutionary significance, our understanding of capitulum development and evolution is limited. This review highlights our current perspective on capitulum evolution through the lens of both its molecular and developmental underpinnings. We attempt to summarize our understanding of the capitulum by focusing on two key characteristics: patterning (arrangement of florets on a capitulum) and floret identity specification. Note that these two features are interconnected such that the identity of florets depends on their position along the inflorescence axis. Phytohormones such as auxin seemingly determine both pattern progression and floret identity specification through unknown mechanisms. Floret morphology in a head is controlled by differential expression of floral symmetry genes regulating floret identity specification. We briefly summarize the applicability of the ABCE quartet model of flower development in regulating the floret organ identity of a capitulum in Asteraceae. Overall, there have been promising advancements in our understanding of capitula; however, comprehensive functional genetic analyses are necessary to fully dissect the molecular pathways and mechanisms involved in capitulum development.

11.
Curr Biol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39079534

RESUMEN

Vivipary is a prominent feature of mangroves, allowing seeds to complete germination while attached to the mother plant, and equips propagules to endure and flourish in challenging coastal intertidal wetlands. However, vivipary-associated genetic mechanisms remain largely elusive. Genomes of two viviparous mangrove species and a non-viviparous inland relative were sequenced and assembled at the chromosome level. Comparative genomic analyses between viviparous and non-viviparous genomes revealed that DELAY OF GERMINATION 1 (DOG1) family genes (DFGs), the proteins from which are crucial for seed dormancy, germination, and reserve accumulation, are either lost or dysfunctional in the entire lineage of true viviparous mangroves but are present and functional in their inland, non-viviparous relatives. Transcriptome dynamics at key stages of vivipary further highlighted the roles of phytohormonal homeostasis, proteins stored in mature seeds, and proanthocyanidins in vivipary under conditions lacking DFGs. Population genomic analyses elucidate dynamics of syntenic regions surrounding the missing DFGs. Our findings demonstrated the genetic foundation of constitutive vivipary in Rhizophoraceae mangroves.

12.
Comput Biol Chem ; 112: 108157, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39047594

RESUMEN

Abscisic acid (ABA) is a crucial plant hormone that is naturally produced in various mammalian tissues and holds significant potential as a therapeutic molecule in humans. ABA is selected for this study due to its known roles in essential human metabolic processes, such as glucose homeostasis, immune responses, cardiovascular system, and inflammation regulation. Despite its known importance, the molecular mechanism underlying ABA's action remain largely unexplored. This study employed computational techniques to identify potential human ABA receptors. We screened 64 candidate molecules using online servers and performed molecular docking to assess binding affinity and interaction types with ABA. The stability and dynamics of the best complexes were investigated using molecular dynamics simulation over a 100 ns time period. Root mean square fluctuations (RMSF), root mean square deviation (RMSD), solvent-accessible surface area (SASA), radius of gyration (Rg), free energy landscape (FEL), and principal component analysis (PCA) were analyzed. Next, the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method was employed to calculate the binding energies of the complexes based on the simulated data. Our study successfully pinpointed four key receptors responsible for ABA signaling (androgen receptor, glucocorticoid receptor, mineralocorticoid receptor, and retinoic acid receptor beta) that have a strong affinity for binding with ABA and remained structurally stable throughout the simulations. The simulations with Hydralazine as an unrelated ligand were conducted to validate the specificity of the identified receptors for ABA. The findings of this study can contribute to further experimental validation and a better understanding of how ABA functions in humans.

13.
J Exp Bot ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082751

RESUMEN

Water-to-land transition is a hallmark of terrestrialization for land plants and requires molecular adaptation to resist water deficiency. Lineages- or species-specific genes are widespread across eukaryotes, and yet the majority of those are functionally unknown and not annotated. Recent studies have revealed that some of such genes could play a role in adapting to environmental stress responses. Here, we identified a novel gene PpBCG1 (Bryophyte Co-retained Gene 1) in the moss Physcomitrium patens that was responsive to dehydration and rehydration. Under de- and rehydration treatments, PpBCG1 was significantly co-expressed with the dehydrin-encoding gene PpDHNA. Microarray data revealed that PpBCG1 was highly expressed in tissues of spores, female organ archegonia, and mature sporophytes. In addition, the Ppbcg1 mutant showed reduced ability of dehydration tolerance, whose plants were accompanied by a relatively low level of chlorophyll content during recovery. Comprehensive transcriptomics uncovered a detailed set of regulatory processes that were affected by the PpBCG1 disruption. Moreover, experimental evidence showed that PpBCG1 might function in the antioxidant activity, abscisic acid (ABA) pathway, and intracellular calcium (Ca2+) homeostasis to resist desiccation. Together, our study provides insights into the roles of one bryophyte co-retained gene in the desiccation tolerance.

14.
J Agric Food Chem ; 72(31): 17666-17674, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051566

RESUMEN

Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 µM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.


Asunto(s)
Ácido Abscísico , Técnicas Biosensibles , Técnicas Electroquímicas , Hojas de la Planta , Solanum lycopersicum , Acero Inoxidable , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Ácido Abscísico/análisis , Ácido Abscísico/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Acero Inoxidable/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Inmunoensayo/métodos , Inmunoensayo/instrumentación
15.
J Exp Bot ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989653

RESUMEN

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

16.
Food Chem ; 459: 140439, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003853

RESUMEN

Elevated CO2 was a potential strategy for strawberry preservation. However, the regulatory mechanism remained unclear. In current study, transcriptome analysis showed that elevated CO2 played important roles in regulating strawberry fruit quality at the transcriptional level, and plant hormones metabolism at least partially involved in the regulatory process. Further, ABA was demonstrated to play important roles in the response to elevated CO2. Elevated CO2 inhibited the accumulation of ABA, which was 61% lower than that in control. Elevated CO2 repressed ABA synthesis by inhibiting NCED activity and the expression of FaNCED1/2, leading to the reduction of ABA accumulation as a result. Meanwhile, elevated CO2 also decreased ABA sensitivity by down-regulating FaSnRK2.4/2.6 and FaABI5 expression. The dual down-regulation of ABA signaling accounted for the regulation of fruit quality under elevated CO2 treatment. These results provide new insights into the mechanism of strawberry fruit response to elevated CO2.

17.
Front Nutr ; 11: 1417526, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036490

RESUMEN

Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.

18.
Front Plant Sci ; 15: 1359315, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988632

RESUMEN

The gene encoding 9-cis-epoxycarotenoid dioxygenase 3 (NCED3) functions in abscisic acid (ABA) biosynthesis, plant growth and development, and tolerance to adverse temperatures, drought and saline conditions. In this study, three rice lines were used to explore the function of OsNCED3, these included an OsNCED3-overexpressing line (OsNCED3-OE), a knockdown line (osnced3-RNAi) and wild-type rice (WT). These rice lines were infested with the brown plant hopper (BPH; Nilaparvata lugens) and examined for physiological and biochemical changes, hormone content, and defense gene expression. The results showed that OsNCED3 activated rice defense mechanisms, which led to an increased defense enzyme activity of superoxide dismutase, peroxidase, and polyphenol oxidase. The overexpression of OsNCED3 decreased the number of planthoppers and reduced oviposition and BPH hatching rates. Furthermore, the overexpression of OsNCED3 increased the concentrations of jasmonic acid, jasmonyl-isoleucine and ABA relative to WT rice and the osnced3-RNAi line. These results indicate that OsNCED3 improved the stress tolerance in rice and support a role for both jasmonates and ABA as defense compounds in the rice-BPH interaction.

19.
Molecules ; 29(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38999081

RESUMEN

Abscisic acid (ABA) is one of the many naturally occurring phytohormones widely found in plants. This study focused on refining APAn, a series of previously developed agonism/antagonism switching probes. Twelve novel APAn analogues were synthesized by introducing varied branched or oxygen-containing chains at the C-6' position, and these were screened. Through germination assays conducted on A. thaliana, colza, and rice seeds, as well as investigations into stomatal movement, several highly active ABA receptor antagonists were identified. Microscale thermophoresis (MST) assays, molecular docking, and molecular dynamics simulation showed that they had stronger receptor affinity than ABA, while PP2C phosphatase assays indicated that the C-6'-tail chain extending from the 3' channel effectively prevented the ligand-receptor binary complex from binding to PP2C phosphatase, demonstrating strong antagonistic activity. These antagonists showed effective potential in promoting seed germination and stomatal opening of plants exposed to abiotic stress, particularly cold and salt stress, offering advantages for cultivating crops under adverse conditions. Moreover, their combined application with fluridone and gibberellic acid could provide more practical agricultural solutions, presenting new insights and tools for overcoming agricultural challenges.


Asunto(s)
Ácido Abscísico , Germinación , Simulación del Acoplamiento Molecular , Ácido Abscísico/química , Germinación/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Semillas/efectos de los fármacos , Semillas/química , Semillas/crecimiento & desarrollo , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Simulación de Dinámica Molecular , Agricultura/métodos , Giberelinas/química , Giberelinas/metabolismo , Piridonas
20.
Plants (Basel) ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38999702

RESUMEN

Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA