Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.559
Filtrar
1.
Biomaterials ; 313: 122792, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226652

RESUMEN

The accumulation of photosensitizers (PSs) in lesion sites but not in other organs is an important challenge for efficient image guiding in photodynamic therapy. Cancer cells are known to express a significant number of albumin-binding proteins that take up albumin as a nutrient source. Here, we converted albumin to a novel BODIPY-like PS by generating a tetrahedral boron environment via a flick reaction. The formed albumin PS has almost the same 3-dimensional structural feature as free albumin because binding occurs at Sudlow Site 1, which is located in the interior space of albumin. An i.v. injection experiment in tumor-bearing mice demonstrated that the human serum albumin PS effectively accumulated in cancer tissue and, more surprisingly, albumin PS accumulated much more in the cancer tissue than in the liver and kidneys. The albumin PS was effective at killing tumor cells through the generation of reactive oxygen species under light irradiation. The crystal structure of the albumin PS was fully elucidated by X-ray crystallography; thus, further tuning of the structure will lead to novel physicochemical properties of the albumin PS, suggesting its potential in biological and clinical applications.


Asunto(s)
Compuestos de Boro , Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Animales , Compuestos de Boro/química , Humanos , Ratones , Línea Celular Tumoral , Ratones Endogámicos BALB C , Especies Reactivas de Oxígeno/metabolismo , Ratones Desnudos , Albúminas/química , Albúminas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo
2.
Adv Mater ; : e2411015, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350462

RESUMEN

The potential of hybrid perovskite/organic solar cells (HSCs) is increasingly recognized owing to their advantageous characteristics, including straightforward fabrication, broad-spectrum photon absorption, and minimal open-circuit voltage (VOC) loss. Nonetheless, a key bottleneck for efficiency improvement is the energy level mismatch at the perovskite/bulk-heterojunction (BHJ) interface, leading to charge accumulation. In this study, it is demonstrated that introducing a uniform sub-nanometer dipole layer formed of B3PyMPM onto the perovskite surface effectively reduces the 0.24 eV energy band offset between the perovskite and the donor of BHJ. This strategic modification suppresses the charge recombination loss, resulting in a noticeable 30 mV increase in the VOC and a balanced carrier transport, accompanied by a 5.0% increase in the fill factor. Consequently, HSCs that achieve power conversion efficiency of 24.0% is developed, a new record for Pb-based HSCs with a remarkable increase in the short-circuit current of 4.9 mA cm-2, attributed to enhanced near-infrared photon harvesting.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39352639

RESUMEN

Alternative water sources are necessary in developing nations because surface water is not always accessible, and groundwater is depleted. In such situations, rainwater harvesting is considered a promising sustainable water resource management solution. Numerous studies have been conducted to determine suitable locations for rainwater harvesting (RWH) using bottom-up approaches applied to large watersheds. The bottom-up methods begin with various geographic criteria and end with regions suitable for RWH intervention, even considering the distance from settlements to be one of the criteria, excluding urban areas from RWH site identification. This study developed a top-down methodology that began with the distributed pinpoint locations of potential RWH sites, as determined by distributed flow accumulation values produced from a digital elevation model (DEM), and then filtered out the sites based on various criteria in the context of urban areas. The flow accumulation values were apportioned according to the flow-contributing area of each RWH site. Five flow-contributing areal scenarios corresponding to 1 km2, 2.5 km2, 5 km2, 7.5 km2, and 10 km2 were considered in this study, as it is challenging to choose a suitable location for RWH sites in urban zones for efficient water storage owing to a variety of land uses. Based on this technique, a case study was conducted in Jaipur, Rajasthan, India, where it was found that the volumetric potential of rainwater storage is maximum (403,679,424.9 cu. m) for 1 km2 and minimum (169,951,322 cu. m) for 10 km2 flow contributing areal distribution per RWH site.

4.
J Am Vet Med Assoc ; : 1-6, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362272

RESUMEN

OBJECTIVE: To describe the CT features of Morel-Lavallée lesions (MLLs) and their association with trauma in cats. This study aimed to investigate whether MLL fluid in cats accumulates between the dermis and deep fascia near superficial trauma, exhibits a vertical attenuation gradient, and shows no or only mild contrast enhancement on CT images. ANIMALS: 3 young cats: a 1-year-old neutered male domestic shorthair cat, a 2-year-old neutered male domestic shorthair cat, and a 3-year-old neutered female British Shorthair cat. CLINICAL PRESENTATION: The clinical presentation of the 3 cats in the study involved recurrent swelling and fluid accumulation affecting at least 1 pelvic limb following trauma. RESULTS: In all cases, there was a fluid-filled space deep to the skin and superficial subcutaneous layer but superficial to the deep fascial plane overlying the muscular component of the pelvic limbs. The MLL fluid had a vertical attenuation gradient and no or only mild contrast enhancement. CLINICAL RELEVANCE: Morel-Lavallée lesions are often initially overlooked, likely due to distraction by concomitant significant bone injuries, and can be mistaken for hematomas, seromas, subcutaneous edema, contusions, or cellulitis, leading to less aggressive treatment. If left untreated, MLLs present a significant risk of extensive skin necrosis compared to other types of subcutaneous swelling.

5.
J Photochem Photobiol B ; 260: 113038, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39366295

RESUMEN

The effects of silver nanoparticles (AgNPs), both alone and in combination with mineral nutrients, on the growth and photosynthesis of Solanum lycopersicum plants during ontogeny were studied. The experiment involved weekly applications of 10 µmol of AgNPs for 15 weeks in a greenhouse over a summer period. A comprehensive characterization of the AgNPs was performed via TEM, ESI/EELS, and zeta potential measurements before and throughout the experiment. The activity of PSII, stomatal conductivity, photosynthesis, transpiration and respiration rates were measured, and the photosynthetic pigments, chloroplast ultrastructure, and dry and fresh masses of leaves, roots, and fruits were assessed. The results indicated that combining AgNPs with mineral nutrients increased PSII activity and the photosynthesis rate and altered the chloroplast ultrastructure. However, the use of mineral nutrients or AgNPs alone did not induce these changes. Atomic absorption spectrometry detected AgNPs in all the plant organs except the fruits. The highest fruit yield was associated with Veni Prisma®, a commercial product containing colloidal silver, which also caused desynchronized fruit maturation. This study hypothesizes that the synergistic effect of AgNPs and mineral nutrients enhances silver accumulation in chloroplasts, improving light utilization and photosynthetic efficiency, particularly under low light, thus increasing fruit quantity and dry mass. Conversely, long-term use of AgNPs alone was accompanied by silver accumulation outside the chloroplasts and did not lead to increased photosynthesis or an increase in fresh fruit mass.

6.
J Ethnopharmacol ; 337(Pt 2): 118890, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39366495

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Accumulation of heat in the lungs and stomach (AHLS) is an important syndrome within the realm of traditional Chinese medicine (TCM). It is the fundamental reason behind numerous illnesses, including mouth ulcers, dermatological conditions, acne, and pharyngitis. Jingzhi Niuhuang Jiedu tablet (JN) serves as the representative prescription for treatment of AHLS clinically. However, the effective components and mechanism of JN's impact on AHLS remain unexplored. AIM OF THE STUDY: The objective of this research was to analyze the effective components of JN and investigate the therapeutic effect and potential mechanism of JN on AHLS. MATERIALS AND METHODS: The effective compounds of JN extract were analyzed and identified using UHPLC-Q-Exactive/HRMS. Utilizing network pharmacology to investigate JN's multi-target, multi-pathway process in treating AHLS. Subsequently, anti-inflammatory activities of JN extract were evaluated in the RAW264.7 cells stimulated by lipopolysaccharide (LPS). In addition, a rat AHLS model induced by LPS and dried ginger was established. Pathological changes in rat lung and stomach tissues observed by HE staining and Masson's trichrome staining. Additionally, the expression of TNF-α, IL-6, and IL-1ß in bronchoalveolar lavage fluid (BALF) was identified through the ELISA assay. For a deeper understanding of how JN might affect AHLS, transcriptomics was utilized to examine differential genes and their underlying mechanisms. Concurrently, techniques like quantitative polymerase chain reaction (q-PCR), immunofluorescence, and western blotting (WB) were employed to confirm various mRNA and protein expression, including Il17ra, Il17re, IL-17A, IL-1ß, IL-6, PPARγ, PGC1-α and UCP1. RESULTS: We identified 178 potential effective components in the JN extract. Network pharmacology analysis showed that the 144 components in JN act on 200 key targets for the treatment of AHLS by suppressing inflammation, regulating energy metabolism, and gastric function. In addition, JN suppressed the LPS-stimulated generation of NO, TNF-α, IL-1ß, and IL-6 in RAW264.7 cells. And JN treatment effectively alleviated lung and stomach injury and reduced inflammation in rats. Analysis of RNA-seq from lung tissues revealed JN's substantial control over crucial genes in the IL-17 signaling pathway, including Il1b and Il17ra. Likewise, RNA sequencing of stomach tissues revealed that JN markedly decreased crucial genes in the Thermogenesis pathway, including Ppargc1a and Ppara. Additional experimental findings confirmed that treatment with JN significantly reduced the expression levels of mRNA (Il17ra, Il17re, Il1b, Ppargc1a and Ucp1), and the expression levels of protein (IL-17A, IL-1ß, IL-6, PPARγ, PGC1-α and UCP1). CONCLUSION: This study not only analyzes the effective components of JN but also reveals that JN could effectively ameliorate AHLS by inhibiting IL-17 signaling pathway and Thermogenesis pathway, which provides evidence for subsequent clinical studies and drug development.

7.
Int J Biol Macromol ; : 136506, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395520

RESUMEN

Glutathione S-transferases (GSTs) are proteases with multiple physiological functions and play an important role in plant responses to abiotic stresses. Nevertheless, there is a paucity of systematic research on GST genes in Prunus genus. Here, 330 GST genes in four Prunus species were identified for the first time and classified into eight subgroups based on protein sequence and conserved structure, among which Tau subfamily genes had the largest number. The amino acid lengths of GST-encoded proteins in the four species ranged from 66 to 1152 aa, most of which were soluble proteins and located in the cytoplasm and chloroplasts. The GST family was propelled by tandem duplications, yet robust purifying selection constrained its divergence. Conserved motif and domain analysis revealed that the majority of PmGSTs exhibited a highly conserved GST-N structure. The expression pattern of PmGSTs exhibited tissue specificity and spatiotemporal specificity. qRT-PCR validated the transcriptome results and 11 genes were differentially expressed in varieties with different flower and stem colors. In addition, we discovered an anthocyanin-related gene PmGSTF2, which can effectively restore the anthocyanin and proanthocyanidin deficiency-related phenotypes of the Arabidopsis tt19 mutant. Recombinant PmGSTF2 enhanced the water solubility of cyanidin and cyanidin-3-O-glucoside in vitro. Moreover, PmMYBa1 could directly bind to the promoter of PmGSTF2 and activate its expression. The findings revealed that GSTs were preserved in Prunus species and that PmGSTF2 was critical in regulating anthocyanin accumulation.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39388022

RESUMEN

Mitigating steatosis is essential for delaying the progression of alcoholic liver disease. The effect and mechanism of Lactiplantibacillus plantarum P101 (LP.P101) on alleviating alcohol-induced hepatic lipid accumulation were investigated in our study. The mouse model was constructed by a short-term (10-day)-plus-binge ethanol feeding and gavaged with 108 CFU/mL of LP.P101 daily. Lipid droplet in the liver was significantly reduced by LP.101 intervention on AMPK activation. However, when AMPK was inhibited by dorsomorphin, the levels of related indicators (ALT, TG, etc.) and the expression levels of AMPK and relevant genes in the liver converged to that of the alcohol-fed group. Compared with the alcohol-fed group, LP.P101 reduced the relative abundance of Firmicutes and increased that of Bacteroidetes. Parabacteroides merdae was negatively correlated with lipid accumulation, and unclassified Negativibacillus was negatively associated with AMPK activation. Importantly, LP.P101 modified the compositions of the serum metabolites. The potential biomarker stercobilinogen was positively correlated with AMPK activation and negatively associated with lipid accumulation. This work confirmed that LP.P101 attenuated alcohol-induced hepatic lipid accumulation in mice through AMPK activation, and the alterations in gut microbiota and metabolites may play a significant role on AMPK activation.

9.
Nano Lett ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388607

RESUMEN

Quantum-dot (QD) light-emitting diodes (QLEDs) are promising candidates for future display technology. An imbalance in the injection of electrons and holes into QLEDs leads to the accumulation of excess charges, predominantly electrons, in the QDs. The precise effects of these accumulated electrons have not yet been fully quantified. This study examines how electron accumulation affects QLED efficiency by operating multiple QLEDs at the same voltage and analyzing the correlation between device efficiency and the number of accumulated electrons, as measured by using electrically pumped transient absorption technology. We analyzed 186 QLED devices made with QDs of different colors and quantum yields. Our results show that when QLEDs utilize QDs with a quantum yield of 95%, electron accumulation indeed reduces device efficiency. However, in QLEDs using QDs with a quantum yield below 70%, a higher density of accumulated electrons enhances the device efficiency.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39384734

RESUMEN

This study investigated the beneficial effects of probiotic Bifidobacterium animalis TISTR 2591 on the regulation of blood glucose and its possible mechanisms in a rat model of type 2 diabetes. The type 2 diabetic-Sprague Dawley rats were established by the combination of a high-fat diet and a low dose of streptozotocin. After 4 weeks of treatment with 2 × 108 CFU/ml of B. animalis TISTR 2591, fasting blood glucose (FBG), oral glucose tolerance, serum insulin, and pancreatic and hepatic histopathology were determined. Liver lipid accumulation, glycogen content, and gluconeogenic protein expression were evaluated. Oxidative stress and inflammatory status were determined. B. animalis TISTR 2591 significantly reduced FBG levels and improved glucose tolerance and serum insulin in the diabetic rats. Structural damage of the pancreas and liver was ameliorated in the B. animalis TISTR 2591-treated diabetic rats. In addition, significant decreases in hepatic fat accumulation, glycogen content, and phosphoenolpyruvate carboxykinase-1 protein expression were found in the diabetic rats treated with B. animalis TISTR 2591. The diabetic rats showed a significant reduction of inflammation following B. animalis TISTR 2591 supplementation, as demonstrated by decreasing hepatic NF-κB protein expression and serum and liver TNF-α levels. The B. animalis TISTR 2591 significantly decreased MDA levels and increased antioxidant SOD and GPx activities in the diabetic rats. In conclusion, B. animalis TISTR 2591 was shown to be effective in controlling glucose homeostasis and improving glucose tolerance in the diabetic rats. These beneficial activities were attributed to reducing oxidative and inflammatory status and modulating hepatic glucose metabolism.

11.
J Control Release ; 376: 167-183, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39384154

RESUMEN

The clinical use of immunostimulatory polyinosinic:polycytidylic acid (pIC) for cancer therapy has been notably limited by its low tumor accumulation and poor cytosolic delivery to activate innate immune sensors. Here, we report a liponanogel (LNG)-based platform to address these challenges. The immunostimulatory LNG consists of an ionizable lipid shell coating a nanogel made of hyaluronic acid (HA), Mn2+ and pIC, which is denoted as LNG-Mn-pIC (LMP). The protonation of internal HA within acidic endosomes increases the endosomal membrane permeability and facilitates the cytosolic delivery of pIC. Moreover, Mn2+, previously reported to activate the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, synergizes with pIC to activate innate immune cells. Remarkably, intravenously injected LMP significantly induces tumor vasculature disruption and tumor cell apoptosis in an innate immune activation-dependent manner, facilitating the LMP delivery into tumors and leading to enhanced antitumor immunity that potently inhibits or even completely regresses the established tumors. In summary, this immunostimulatory LNG platform not only serves as a useful tool to uncover the immune activation-enhanced drug delivery profile but also represents a broadly applicable platform for effective cancer immunotherapy.

12.
Animal ; 18(10): 101329, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39378609

RESUMEN

The problem of copper (Cu) intoxication and deficiency continues to impact economic gains and animal welfare in sheep husbandry. This study investigated the ovine genome for regions and potential genes under selection for Cu accretion between sheep breeds. For this, we compared ovine single nucleotide polymorphism (SNP) data of three Cu-susceptible breeds with three Cu-tolerant breeds. After merging SNP data of breeds and removal of related individuals, a total of 229 sheep and 45 640 autosomal SNPs were left. Then, we selected 14 individuals per breed into two datasets (datasets 1 and 2) for analysis of selection signatures using the Fixation index, cross-population extended haplotype homozygosity and haplotype-based FLK methods. Selection regions shared by both datasets detected by at least two methods revealed regions on OAR 4, 8 and 11 containing 54 candidate genes under selection for Cu accretion. Enrichment analysis revealed that 19 gene ontologies and 1 enriched Kyoto encyclopaedia of genes and genomes pathway terms were associated with the candidate genes under selection. Genes such as TP53, TNFSF13, TNFSF12, ALOX15, ALOX12, EIF5A and PREP are associated with the regulation of Cu homeostasis, programmed cell death or inflammatory response. We also found an enrichment of arachidonate 15-lipoxygenase activity, arachidonate 12-lipoxygenase activity and ferroptosis that influence cellular inflammation and cell death. These results shed light on ovine genomic regions under selection for Cu accretion and provide information on candidate genes for further studies on breed differences in ovine Cu accretion.

13.
J Neurophysiol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382979

RESUMEN

Perceptual decision-making involves multiple cognitive processes, including accumulation of sensory evidence, planning, and executing a motor action. How these processes are intertwined is unclear; some models assume that decision-related processes precede motor execution, whereas others propose that movements reflecting on-going decision processes occur before commitment to a choice. Here we combine and apply two complementary methods to study the relationship between decision processes and the movements leading up to a choice. The first is a free response pulse-based evidence accumulation task, in which stimuli continue until choice is reported and the second is a motion-based drift diffusion model (mDDM), in which movement variables from video pose estimation constrain decision parameters on a trial-by-trial basis. We find the mDDM provides a better model fit to rats' decisions in the free response accumulation task than traditional DDM models. Interestingly, on each trial we observed a period of time, prior to choice, that was characterized by head immobility. The length of this period was positively correlated with the rats' decision bounds and stimuli presented during this period had the greatest impact on choice. Together these results support a model in which internal decision dynamics are reflected in movements and demonstrate that inclusion of movement parameters improves the performance of diffusion-to-bound decision models.

14.
J Trace Elem Med Biol ; 86: 127541, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39383660

RESUMEN

Arsenic migration from soil to crop plants and subsequently human consumption of contaminated foodstuffs is a serious threat for society. In the present study, two oxidation states of selenium [Se(0) and Se(VI)] were used to check their efficacy towards amelioration of arsenic toxicity in chickpeas (Cicer arietinum L.). Three different concentrations (1, 5, and 10 mg/L) of both oxidation states of selenium were applied separately and in combination against a fixed dose (10 mg/L) of arsenic [(As(V)] treatment on chickpea seedlings. Further, seed germination and seedling growth attributes, oxidative stress, and antioxidant defense under different treatments were analyzed. The changes in anatomical structures and arsenic accumulation in different parts of seedlings were also studied. Results revealed that increased generation of oxidative stress affected physiobiochemical parameters of seedlings and diminished plant growth and deformation in vascular bundles under arsenic stress. However, the combined application of Se with As showed overall improvement in seedling growth, reduced oxidative stress, and organized vascular bundles of chickpea seedlings as compared to arsenic stress alone. The arsenic uptake and accumulation in chickpea seedlings were also reduced upon supplementation of Se. The highest reduction of arsenic accumulation by 42 and 56 % in roots, while 47 and 58 % in shoots were recorded by the application of 10 mg/L of Se(0) and Se (VI) under As stress, respectively. Overall, Se(VI) showed much better performance towards the minimization of arsenic-induced phytotoxicity and arsenic accumulation as compared to Se(0). Therefore, this study explored the efficacy of different forms of selenium towards the mitigation of arsenic toxicity in plants.

15.
Environ Int ; 192: 109053, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39383767

RESUMEN

Hexafluoropropylene oxide trimer acid (HFPO-TA) and hexafluoropropylene oxide tetramer acid (HFPO-TeA) are two novel alternatives of perfluorooctanoic acid (PFOA). However, their toxicokinetics and accumulation mechanisms in fish are still unknown. This study provides the first line of in vivo uptake and depuration kinetic, bioaccumulation mechanism and tissue-specific distribution for HFPO-TA and HFPO-TeA, upon a 28-day water exposure and a 14-day depuration in zebrafish (Danio rerio). HFPO-TeA and HFPO-TA could quickly accumulate in zebrafish, and the highest concentrations of HFPO-TeA (15.4 ± 1.6 nmol/g ww), HFPO-TA (4.95 ± 0.19 nmol/g ww) and PFOA (0.47 ± 0.03 nmol/g ww) were consistently present in the blood, which was followed by liver, kidney, intestine, gill, gonad and brain, while the lowest were observed in the muscle (1.01 ± 0.11, 0.16 ± 0.02, and 0.01 ± 0.001 nmol/g ww, respectively), indicating both higher accumulation potentials of both HFPO homologs than their predecessor PFOA. The tissue protein content, rather than lipid content, played an enhancing role in the enrichment of three target chemicals, exhibiting a significant positive correlation (r = 0.735, p = 0.038 for HFPO-TeA; r = 0.770, p = 0.026 for HFPO-TA and r = 0.942, p = 0.001 for PFOA) between the tissue bioconcentration factor (BCF) and the protein contents in corresponding tissues. This phenomenon was validated by the equilibrium dialysis experiment, molecular docking analysis and molecular dynamics simulation, which consistently indicated that the binding affinities of serum and liver proteins were greatest with HFPO-TeA, followed by HFPO-TA and least with PFOA. These results suggested that the binding of the target chemicals to specific proteins determined their tissue-specific accumulation potentials. Nontarget screening by high resolution mass spectrometry (HRMS) did not identify suspicious degradation products for HFPO-TA, implying the strong persistence of HFPO-TA in fish.

16.
Bioresour Technol ; : 131580, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39384049

RESUMEN

Challenges in obtaining stable nitrite have impeded the use of anammox in municipal wastewater treatment. This study explored the feasibility of using sludge fermentation products as carbon source and selective nitrification inhibitor to supply nitrite via partial nitrification (PN) and partial denitrification (PD). PD was initiated within 15 days, achieving nitrite transformation rate of over 90 % with a C/N ratio of 3 and a reaction time of 0.75 h. The dominant genus, Romboutsia, increased in relative abundance from 4.1 to 35 %. Organic acids in sludge fermentation products, like acetate (200 mg/L) and propionate (400 mg/L), selectively suppressed nitrite-oxidizing bacteria (NOB) more than ammonia-oxidizing bacteria (AOB), leading to PN. Combining anaerobic exposure with sludge fermentation products addition achieved PN with over 80.0 % nitrite accumulation. AOB increased tenfold in the long term, significantly outpacing NOB growth. This strategy simplifies difficulty of anammox application and shows broad application potential in municipal wastewater treatment.

17.
Environ Pollut ; 363(Pt 1): 125076, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374761

RESUMEN

Plastic pollution, a global threat to environmental and human health, is now ubiquitous in the environment, including agricultural soils receiving urban compost amendments. Yet, the accumulation pattern of microplastics in soils are still to be disentangled, with regards to their sources and/or their physical properties such as morphotypes. The aim of this study was to identify the accumulation patterns of coarse microplastics (CMP) resulting from the long-term amendment of soil with urban waste composts. To this end, we used a field experiment receiving three different urban composts derived from municipal solid waste, biowaste, and a mixture of sewage sludge and green waste. We isolated 1417 coarse microplastic particles from a 21-year archive of soil and compost samples, using density fractionation followed by oxidation, and used Py-GC/MS for polymer identification. Different compost types led to different coarse microplastics accumulation levels. The accumulation pattern showed increasing CMP contents in soils over time. After 21 years of experiment, the calculated number of CMP was in accordance with the estimated values for all three compost types but it was not the case for the CMP mass. No difference of evolution pattern was found between films and fragments. We proposed that biotic transport or abiotic weathering and fragmentation could explain such differences in CMP evolution pattern.

18.
Sci Total Environ ; 954: 176665, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362541

RESUMEN

Manipulating root functional traits related to phosphorus (P) mobilization and acquisition by using the optimum rate of synthetic P fertilizer coupled with straw addition is a promising option for improving nutrient-use efficiency in agriculture. How such practices influence soil cadmium (Cd) fractions and plant Cd accumulation remains unknown. We conducted two field trials: exp. 1 with varied P fertilizer rates [control without P, reduced rates of P fertilization at 100 and 160 kg P ha-1 as well as the standard P fertilization rate (200 kg P ha-1) used by farmers], and exp. 2 with reduced P fertilization at 100 and 160 kg P ha-1 without or with straw addition (10 t ha-1) to investigate soil Cd fractionations and S. lycopersicum Cd uptake as influenced by root morphological and exudation traits related to P acquisition. In experiment 1, reduced P rates (100 and 160 kg P ha-1) increased the concentration of exchangeable Cd in soil by 6.4 %-77.1 %, which corresponded to a 12.6 %-18.4 % increase in Cd concentration in S. lycopersicum fruits. These reduced rates of P fertilization induced root proliferation and rhizosphere carboxylate exudation, increasing the relative proportion of exchangeable Cd in the soil solution and enhancing Cd uptake, especially from 30th to 45th day of S. lycopersicum growth. By contrast, the straw addition (exp 2) increased soil organic matter in soil by 7.19 %-15.8 % and decreased both rhizosphere carboxylate content by 6.47 %-35.5 % and soil exchangeable Cd content irrespective of P treatments. Consequently, with straw addition, fruit Cd content decreased by 26.5 % and 26.4 %, respectively, at 100 and 160 kg P ha-1. In summary, the P-responsive root functional traits influenced soil Cd fractionation (via carboxylate exudation) and mediated Cd accumulation (via root proliferation). Straw amendment diminished these P-responsive root traits, thus decreasing Cd accumulation by S. lycopersicum.

19.
Microbiol Spectr ; : e0111524, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39387567

RESUMEN

Multi-infection of plants by viruses is very common and can change drastically infection parameters such as virus accumulation, distribution, and vector transmission. Sugar beet is an important crop that is frequently co-infected by the polerovirus beet chlorosis virus (BChV) and the closterovirus beet yellows virus (BYV), both vectored by the green peach aphid (Myzus persicae). These phloem-limited viruses are acquired while aphids ingest phloem sap from infected plants. Here we found that co-infection decreased transmission of BChV by ~50% but had no impact on BYV transmission. The drastic reduction of BChV transmission was due to neither lower accumulation of BChV in co-infected plants nor reduced phloem sap ingestion by aphids from these plants. Using the signal amplification by exchange reaction fluorescent in situ hybridization technique on plants, we observed that 40% of the infected phloem cells were co-infected and that co-infection caused redistribution of BYV in these cells. The BYV accumulation pattern changed from distinct intracellular spherical inclusions in mono-infected cells to a diffuse form in co-infected cells. There, BYV co-localized with BChV throughout the cytoplasm, indicative of virus-virus interactions. We propose that BYV-BChV interactions could restrict BChV access to the sieve tubes and reduce its accessibility for aphids and present a model of how co-infection could alter BChV intracellular movement and/or phloem loading and reduce BChV transmission.IMPORTANCEMixed viral infections in plants are understudied yet can have significant influences on disease dynamics and virus transmission. We investigated how co-infection with two unrelated viruses, BChV and BYV, affects aphid transmission of the viruses in sugar beet plants. We show that co-infection reduced BChV transmission by about 50% without affecting BYV transmission, despite similar virus accumulation rates in co-infected and mono-infected plants. Follow-up experiments examined the localization and intracellular distribution of the viruses, leading to the discovery that co-infection caused a redistribution of BYV in the phloem vessels and altered its repartition pattern within plant cells, suggesting virus-virus interactions. In conclusion, the interplay between BChV and BYV affects the transmission of BChV but not BYV, possibly through direct or indirect virus-virus interactions at the cellular level. Understanding these interactions could be crucial for managing virus propagation in crops and preventing yield losses.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39388087

RESUMEN

Arsenic (As) contamination of agricultural soil has become a major concern due to its adverse effects on plant growth and human health. Selenium nanoparticles (SeNPs), a novel selenium (Se) source, are characterised by their exceptional biocompatibility, degradability, and bioactivities. In the present study, SeNPs were biogenically synthesised and further characterised using UV-visible spectroscopy, XRD, FTIR, and TEM analysis. Different concentrations of the synthesised SeNPs were used to treat Spinacia oleracea L. (spinach) seeds to determine their impact on growth profile, gas exchange, photosynthetic pigments, oxidative stress, and antioxidant enzyme status upon arsenite (AsIII) treatment. The findings revealed that SeNP supplementation at a concentration of 100 µM (SeNPs100) led to a significant reduction in As accumulation by twofold in roots and 1.5-fold in leaves when compared to plants exposed to AsIII100 (µM) alone. Interestingly, the photosynthetic efficiency was also remarkably enhanced upon SeNPs100 treatment, associated with increased activities of the defence enzymes (ascorbate peroxidase, catalase, and glutathione peroxidase) in the AsIII + SeNP-exposed spinach plants as compared to AsIII treatment alone. Overall, the present study highlights the potential of biogenic SeNP supplementation in promoting plant growth and mitigating As toxicity in spinach under AsIII stress. This study could have significant implications for the use of SeNPs as a nanofertiliser in regions grappling with As-contaminated soils for sustainable agriculture and human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA