RESUMEN
Biosurfactants are amphiphilic biomolecules with promising tensoative and emulsifying properties that find application in the most varied industrial sectors: environment, food, agriculture, petroleum, cosmetics, and hygiene. In the current work, a 23 full-factorial design was performed to evaluate the effect and interactions of pineapple peel and corncob as substrates for biosurfactant production by Bacillus subtilis LMA-ICF-PC 001. In a previous stage, an alkaline pretreatment was applied to corncob samples to extract the xylose-rich hydrolysate. The results indicated that pineapple peel extract and xylose-rich hydrolysate acted as partial glucose substitutes, minimizing production costs with exogenous substrates. Biosurfactant I (obtained at 8.11% pineapple peel extract, 8.11% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited a significant surface tension reduction (52.37%) and a promising bioremediation potential (87.36%). On the other hand, biosurfactant III (obtained at 8.11% pineapple peel extract, 31.89% xylose-rich hydrolysate from corncob, and 2.8109 g/L glucose) exhibited the maximum emulsification index in engine oil (69.60%), the lowest critical micellar concentration (68 mg/L), and the highest biosurfactant production (5.59 g/L). These findings demonstrated that using pineapple peel extract and xylose-rich hydrolysate from corncob effectively supports biosurfactant synthesis by B. subtilis, reinforcing how agro-industrial wastes can substitute traditional carbon sources, contributing to cost reduction and environmental sustainability.
Asunto(s)
Ananas , Tensoactivos , Zea mays , Tensoactivos/química , Ananas/química , Zea mays/química , Bacillus subtilis/metabolismo , Biodegradación AmbientalRESUMEN
Pineapple Fruitlet Core Rot (FCR) is a fungal disease characterized by a multi-pathogen pathosystem. Recently, Fusarium proliferatum, Fusarium oxysporum, and Talaromyces stollii joined the set of FCR pathogens until then exclusively attributed to Fusarium ananatum. The particularity of FCR relies on the presence of healthy and diseased fruitlets within the same infructescence. The mycobiomes associated with these two types of tissues suggested that disease occurrence might be triggered by or linked to an ecological chemical communication-promoting pathogen(s) development within the fungal community. Interactions between the four recently identified pathogens were deciphered by in vitro pairwise co-culture bioassays. Both fungal growth and mycotoxin production patterns were monitored for 10 days. Results evidenced that Talaromyces stollii was the main fungal antagonist of Fusarium species, reducing by 22% the growth of Fusarium proliferatum. A collapse of beauvericin content was observed when FCR pathogens were cross-challenged while fumonisin concentrations were increased by up to 7-fold. Antagonism between Fusarium species and Talaromyces stollii was supported by the diffusion of a red pigmentation and droplets of red exudate at the mycelium surface. This study revealed that secondary metabolites could shape the fungal pathogenic community of a pineapple fruitlet and contribute to virulence promoting FCR establishment.
Asunto(s)
Ananas , Fusarium , Micotoxinas , Enfermedades de las Plantas , Talaromyces , Ananas/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Fusarium/patogenicidad , Talaromyces/crecimiento & desarrollo , Talaromyces/metabolismo , Enfermedades de las Plantas/microbiología , Micotoxinas/metabolismo , Frutas/microbiología , Técnicas de CocultivoRESUMEN
The cultivation of pineapple (Ananas comosus) is threatened worldwide by mealybug wilt disease of pineapple (MWP), whose etiology is not yet fully elucidated. In this study, we characterized pineapple mealybug wilt-associated ampeloviruses (PMWaVs, family Closteroviridae) from a diseased pineapple plant collected from Reunion Island, using a high-throughput sequencing approach combining Illumina short reads and Nanopore long reads. Reads co-assembly resulted in complete or near-complete genomes for six distinct ampeloviruses, including the first complete genome of pineapple mealybug wilt-associated virus 5 (PMWaV5) and that of a new species tentatively named pineapple mealybug wilt-associated virus 7 (PMWaV7). Short reads data provided high genome coverage and sequencing depths for all six viral genomes, contrary to long reads data. The 5' and 3' ends of the genome for most of the six ampeloviruses could be recovered from long reads, providing an alternative to RACE-PCRs. Phylogenetic analyses did not unveil any geographic structuring of the diversity of PMWaV1, PMWaV2 and PMWaV3 isolates, supporting the current hypothesis that PMWaVs were mainly spread by human activity and vegetative propagation.
Asunto(s)
Ananas , Closteroviridae , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Enfermedades de las Plantas , Ananas/virología , Enfermedades de las Plantas/virología , Closteroviridae/genética , Closteroviridae/clasificación , Closteroviridae/aislamiento & purificación , Reunión , ARN Viral/genéticaRESUMEN
Pineapple aroma is one of the most important sensory quality traits that influences consumer purchasing patterns. Reported in this paper is a high throughput method to quantify in a single analysis the key volatile organic compounds that contribute to the aroma of pineapple cultivars grown in Australia. The method constituted stable isotope dilution analysis in conjunction with headspace solid-phase microextraction coupled with gas-chromatography mass spectrometry. Deuterium labelled analogues of the target analytes purchased commercially were used as internal standards. Twenty-six volatile organic compounds were targeted for quantification and the resulting calibration functions of the matrix -matched validated method had determination coefficients (R2) ranging from 0.9772 to 0.9999. The method was applied to identify the key aroma volatile compounds produced by popular pineapple cultivars such as 'Aus Carnival', 'Aus Festival', 'Aus Jubilee', 'Aus Smooth (Smooth Cayenne)' and 'Aussie Gold (73-50)', grown in Queensland, Australia. Pineapple cultivars varied in its content and composition of free volatile components, which were predominantly comprised of esters, followed by terpenes, alcohols, aldehydes, and ketones.
Asunto(s)
Ananas , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Ananas/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Australia , Odorantes/análisis , Técnicas de Dilución del IndicadorRESUMEN
The recent increase in the harvesting and industrial processing of tropical fruits such as pineapple and papaya is leading to unavoidable amounts of byproducts rich in valuable compounds. Given the significance of the chemical composition of these byproducts, new research avenues are opening up to exploit them in the food industry. In this sense, the revalorization of pineapple and papaya byproducts is an emerging trend that is encouraging the full harnessing of these tropical fruits, offering the opportunity for developing innovative value-added products. Therefore, the main aim of this review is to provide an overview of the state of the art of the current valorization applications of pineapple and papaya byproducts in the field of food industry. For that proposal, comprehensive research of valorization applications developed in the last years has been conducted using scientific databases, databases, digital libraries, and scientific search engines. The latest valorization applications of pineapple and papaya byproducts in the food industry have been systematically revised and gathered with the objective of synthesizing and critically analyzing existing scientific literature in order to contribute to the advancement of knowledge in the field of tropical byproduct revalorization providing a solid foundation for further research and highlighting scientific gaps and new challenges that should be addressed in the future.
Asunto(s)
Ananas , Carica , Frutas , Carica/química , Ananas/química , Frutas/química , Industria de Alimentos , Manipulación de Alimentos/métodosRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.
Asunto(s)
Antihelmínticos , Haemonchus , Helmintiasis , Limoninas , Plantas Medicinales , Adulto , Animales , Humanos , Plantas Medicinales/química , Tubulina (Proteína) , Antihelmínticos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , ColchicinaRESUMEN
Bromelain is a complex natural mixture of sulfhydryl-containing proteolytic enzymes that can be extracted from the stem or fruit of the pineapple. This compound is considered a safe nutraceutical, has been used to treat various health problems, and is also popular as a health-promoting dietary supplement. There is continued interest in bromelain due to its remarkable therapeutic properties. The mechanism of action of bromelain appears to extend beyond its proteolytic activity as a digestive enzyme, encompassing a range of effects (mucolytic, anti-inflammatory, anticoagulant, and antiedematous effects). Little is known about the clinical use of bromelain in pediatrics, as most of the available data come from in vitro and animal studies, as well as a few RCTs in adults. This narrative review was aimed at highlighting the main aspects of the use of bromelain in children, which still appears to be limited compared to its potential. Relevant articles were identified through searches in MEDLINE, PubMed, and EMBASE. There is no conclusive evidence to support the use of bromelain in children, but the limited literature data suggest that its addition to standard therapy may be beneficial in treating conditions such as upper respiratory tract infections, specific dental conditions, and burns. Further studies, including RCTs in pediatric settings, are needed to better elucidate the mechanism of action and properties of bromelain in various therapeutic areas.
RESUMEN
A three-arm, randomized, placebo-controlled clinical study was conducted to assess the impact of lyophilized pineapple extract with titrated bromelain (Brome-Inf®) and purified bromelain on pain, swelling, trismus, and quality of life (QoL) following the surgical extraction of the mandibular third molars. Furthermore, this study examined the need for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) by comparing their effects with a placebo group. This study enrolled 42 individuals requiring the extraction of a single mandibular third molar under local anesthesia. The patients were randomly assigned to receive Brome-Inf®, purified bromelain, or a placebo orally, initiating treatment on the day of surgery and continuing for the next 7 days. The primary outcome measured was the requirement for NSAIDs in the three groups. Pain, swelling, and trismus were secondary outcome variables, evaluated postoperatively at 1, 3, and 7 days. This study also assessed the comparative efficacy of freeze-dried pineapple extract and single-component bromelain. Ultimately, the placebo group showed a statistically higher need for ibuprofen (from days 1 to 7) at the study's conclusion (p < 0.0001). In addition, reductions in pain and swelling were significantly higher in both the bromelain and pineapple groups (p < 0.0001 for almost all patients, at all intervals) than in the placebo group. The active groups also demonstrated a significant difference in QoL compared to the placebo group (p < 0.001). A non-significant reduction in trismus occurred in the treatment groups compared to the placebo group. Therefore, the administration of pineapple extract titrated in bromelain showed significant analgesic and anti-edema effects in addition to improving QoL in the postoperative period for patients who had undergone mandibular third molar surgery. Moreover, both bromelain and Brome-Inf® supplementation reduced the need for ibuprofen to comparable extents, proving that they are good alternatives to NSAIDs in making the postoperative course more comfortable for these patients. A further investigation with larger samples is necessary to assess the pain-relieving and anti-inflammatory impacts of the entire pineapple phytocomplex in surgical procedures aside from mandibular third molar surgery.
Asunto(s)
Ananas , Ibuprofeno , Humanos , Ibuprofeno/uso terapéutico , Tercer Molar/cirugía , Calidad de Vida , Dolor Postoperatorio/tratamiento farmacológico , Bromelaínas/uso terapéutico , Trismo/tratamiento farmacológico , Trismo/etiología , Trismo/prevención & control , Antiinflamatorios/uso terapéutico , Antiinflamatorios no Esteroideos/uso terapéutico , Edema/tratamiento farmacológico , Edema/etiología , Edema/prevención & control , Extracción Dental/efectos adversosRESUMEN
Diabetes affects millions globally and poses treatment challenges. Targeting the enzyme fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis and exploring plant-based therapies offer potential solutions for improving diabetes management while supporting sustainability and medicinal advancements. Utilizing pineapple (Ananas comosus L. Merr.) waste as a source of drug precursors could be valuable for health and environmental care due to its medicinal benefits and abundant yearly biomass production. Therefore, this study conducted a virtual screening to identify potential natural compounds from pineapple that could inhibit FBPase activity. A total of 112 compounds were screened for drug-likeness and ADMET properties, and molecular docking simulations were performed on 20 selected compounds using blind docking. The lead compound, butane-2,3-diyl diacetate, was subjected to 100 ns MD simulations, revealing a binding energy of -5.4 kcal/mol comparable to metformin (-5.6 kcal/mol). The MD simulation also confirmed stable complexes with crucial hydrogen bonds. Glu20, Ala24, Thr27, Gly28, Glu29, Leu30, Val160, Met177, Asp178, and Cys179 were identified as key amino acids that stabilized the human liver FBPase-butane-2,3-diyl diacetate complex, while Tyr215 and Asp218 played a crucial role in the human liver FBPase-Metformin complex. Our study indicates that the lead compound has high intestinal solubility. Therefore, it would show rapid bloodstream distribution and effective action on the target protein, making butane-2,3-diyl diacetate a potential antidiabetic drug candidate. However, further investigations in vitro, preclinical, and clinical trials are required to thoroughly assess its efficacy and safety.Communicated by Ramaswamy H. Sarma.
RESUMEN
Background This study aimed to environmentally synthesize zinc oxide nanoparticles (ZnO-NPs) using Ananas comosus (AC) extract and evaluated their antimicrobial efficacy against Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis. Methodology AC extract was combined with a zinc sulfate solution to synthesize ZnO-NPs. The NPs were characterized using UV-visible spectroscopy, Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), and energy-dispersive electron microscopy (EDX). Antimicrobial activity was assessed using the agar disc diffusion method against S. aureus, S. mutans, and E. faecalis. Results Green synthesis of ZnO-NPs with AC extract yielded NPs of different sizes and shapes. SEM analysis showed circular and conical NPs measuring up to 10 nm. EDX analysis confirmed the presence of zinc (Zn) and oxygen (O) particles. UV-visible spectroscopy indicated ZnO-NP formation with a peak at 290 nm. These NPs exhibited strong antimicrobial activity against S. aureus, with larger inhibition zones at higher concentrations, i.e., 15 mm at 100 µL. Whereas they showed low activity of 12 mm at 100 µL against S. mutans and showed no activity against E. faecalis. Conclusions Environmentally friendly synthesis of ZnO-NPs using AC extract provides an effective method for NP production. It exhibits strong antimicrobial activity against S. aureus, indicating the potential for targeted antimicrobial solutions in addressing associated infections.
RESUMEN
Lysinibacillus fusiformis PwPw_T2 isolated from deteriorating Ananas comosus sample collected from Lagos State, Nigeria putatively possesses genomic features like potential enzymes catalyzing acetic acid production and xenobiotic compounds degradation via various pathways as indicated by its genome sequences. These could make the organism relevant in food waste valorization and micro-biotechnology.
RESUMEN
Phosphatidylethanolamine binding protein (PEBP) plays an important role in regulating flowering time and morphogenesis of plants. However, the identification and functional analysis of PEBP gene in pineapple (AcPEBP) have not been systematically studied. The pineapple genome contained 11 PEBP family members, which were subsequently classified into three subfamilies (FT-like, TFL-like and MFT-like) based on phylogenetic relationships. The arrangement of these 11 shows an unequal pattern across the six chromosomes of pineapple the pineapple genome. The anticipated outcomes of the promoter cis-acting elements indicate that the PEBP gene is subject to regulation by diverse light signals and endogenous hormones such as ethylene. The findings from transcriptome examination and quantitative real-time polymerase chain reaction (qRT-PCR) indicate that FT-like members AcFT3 and AcFT4 display a heightened expression level, specifically within the floral structures. The expression of AcFT3 and AcFT4 increases sharply and remains at a high level after 4 days of ethylene induction, while the expression of AcFT7 and AcMFT1 decreases gradually during the flowering process. Additionally, AcFT3, AcFT4 and AcFT7 show specific expression in different floral organs of pineapple. These outcomes imply that members belonging to the FT-like subfamily may have a significant impact on the process of bud differentiation and flower development. Through transcriptional activation analysis, it was determined that AcFT4 possesses transcriptional activation capability and is situated in the nucleus and peripheral cytoplasm. Overexpression of AcFT4 in Arabidopsis resulted in the promotion of early flowering by 6-7 days. The protein interaction prediction network identified potential flower regulators, including CO, AP1, LFY and SOC1, that may interact with PEBP proteins. This study explores flower development in pineapple, thereby serving as a valuable reference for future research endeavors in this domain.
RESUMEN
This research aimed to optimize the processing conditions to obtain ready-to-eat extruded snacks with a high fiber content from mixtures of pineapple byproduct powder (PBP) and nixtamalized maize flour (PBP-NMF) or maize flour (PBP-MF). The effects of barrel temperature, feed moisture content, and PBP were evaluated. The increase in barrel temperature has a negative effect on the bulk density, the water absorption index, and the texture in both mixtures (PBP-MF and PBP-NMF) and increases the expansion index and the water solubility index in the mixture with MF. The increase in the feed moisture content increased the bulk density and water absorption index in both mixtures and the texture in the mixtures with MF. The increasing PBP decreases the expansion index and increases the water solubility index in both mixtures. The increase in PBP in the mixtures with MF decreases the water absorption index, texture, and bulk density. From the optimization, four products were obtained, two for the NMF mixture and two for the MF mixtures. The optimal formulations can be considered a good source of total fiber (12.46-12.78 g/100 g) and protein (8.27-8.85 g/100 g) with good acceptance by consumers. PRACTICAL APPLICATION: Pineapple byproducts in combination with nixtamalized and nonnixtamalized maize flour are viable raw materials for the development of ready-to-eat extruded snacks with a high content of dietary fiber and good acceptance by consumers. Due to their characteristic nutritional properties, the consumption of this ready-to-eat snack could present potential benefits for human health.
Asunto(s)
Ananas , Harina , Humanos , Harina/análisis , Zea mays , Bocadillos , Manipulación de Alimentos , AguaRESUMEN
Pineapple [Ananas comosus (L.) Merr.] is the most economically important crop possessing crassulacean acid metabolism (CAM) photosynthesis which has a higher water use efficiency by control of nocturnal opening and diurnal closure of stomata. To provide novel insights into the diel regulatory landscape in pineapple leaves, we performed genome-wide mapping of DNase I hypersensitive sites (DHSs) in pineapple leaves at day (2a.m.) and night (10a.m.) using a simplified DNase-seq method. As a result, totally 33340 and 28753 DHSs were found in green-tip tissue, and 29597 and 40068 were identified in white-base tissue at 2a.m. and 10a.m., respectively. We observed that majority of the pineapple genes occupied less than two DHSs with length shorter than 1 kb, and the promotor DHSs showed a proximal trend to the transcription start site (>77% promotor DHSs within 1 kb). In addition, more intergenic DHSs were identified around transcription factors or transcription co-regulators (TFs/TCs) than other functional genes, indicating complex regulatory contexts around TFs/TCs. Through combined analysis of tissue preferential DHSs and genes, we respectively found 839 and 888 coordinately changed genes in green-tip at 2a.m. and 10a.m. (AcG2 and AcG10). Furthermore, AcG2-specific, AcG10-specific and common accessible DHSs were dissected from the total photosynthetic preferential DHSs, and the regulatory networks indicated dynamic regulations with multiple cis-regulatory elements occurred to genes preferentially expressed in photosynthetic tissues. Interestingly, binding motifs of several cycling TFs were identified in the DHSs of key CAM genes, revealing a circadian regulation to CAM coordinately diurnal expression. Our results provide a chromatin regulatory landscape in pineapple leaves during the day and night. This will provide important information to assist with deciphering the circadian regulation of CAM photosynthesis.
RESUMEN
Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.
Asunto(s)
Ananas , Antioxidantes , Antioxidantes/metabolismo , Ananas/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis , Clorofila/metabolismo , Glutatión/metabolismo , Peróxidos/metabolismo , Hojas de la Planta/metabolismoRESUMEN
Background: Pineapple has an important role in ethnopharmacology and its enzyme, bromelain, has been extensively investigated for its medicinal properties. Aim: This systematic review and meta-analysis aimed to assess clinical evidence concerning the efficacy and safety of bromelain. Methods: A systematic search was conducted from conception to August 2022 using CINAHL Complete, MEDLINE, ScienceDirect, Scopus, and Thai Journal Online (TJO). The risk of bias was assessed using Risk of Bias 2 or ROBIN-I. A random-effect model with inverse variance weighting and DerSimonian and Laird method was used for meta-analysis. The heterogeneity was evaluated by I2 statistics. Results: We included 54 articles for qualitative summary and 39 articles for meta-analysis. The systematic review found that bromelain presented in serum with retained proteolytic activity after oral absorption. Bromelain may be effective against sinusitis but was not effective for cardiovascular diseases. Pain reduction from oral bromelain was slightly but significantly better than controls (mean difference in pain score = -0.27; 95% CI: -0.45, -0.08; n = 9; I2 = 29%). Adverse events included flatulence, nausea, and headache. Topical bromelain significantly reduced the time to complete debridement (mean difference in time = -6.89 days; 95% CI: -7.94, -5.83; n = 4; I2 = 2%). Adverse events may be irrelevant and include burning sensation, pain, fever, and sepsis. Conclusions: Moderate-quality studies demonstrated the potential of oral bromelain in pain control and topical bromelain in wound care. Major health risks were not reported during the treatment with bromelain.
Asunto(s)
Ananas , Bromelaínas , Humanos , Bromelaínas/efectos adversos , Etnofarmacología , Dolor/tratamiento farmacológicoRESUMEN
Ochratoxin A (OTA) is considered one of the main mycotoxins responsible for health problems and considerable economic losses in the feed industry. The aim was to study OTA's detoxifying potential of commercial protease enzymes: (i) Ananas comosus bromelain cysteine-protease, (ii) bovine trypsin serine-protease and (iii) Bacillus subtilis neutral metalloendopeptidase. In silico studies were performed with reference ligands and T-2 toxin as control, and in vitro experiments. In silico study results showed that tested toxins interacted near the catalytic triad, similar to how the reference ligands behave in all tested proteases. Likewise, based on the proximity of the amino acids in the most stable poses, the chemical reaction mechanisms for the transformation of OTA were proposed. In vitro experiments showed that while bromelain reduced OTA's concentration in 7.64% at pH 4.6; trypsin at 10.69% and the neutral metalloendopeptidase in 8.2%, 14.44%, 45.26% at pH 4.6, 5 and 7, respectively (p < 0.05). The less harmful α-ochratoxin was confirmed with trypsin and the metalloendopeptidase. This study is the first attempt to demonstrate that: (i) bromelain and trypsin can hydrolyse OTA in acidic pH conditions with low efficiency and (ii) the metalloendopeptidase was an effective OTA bio-detoxifier. This study confirmed α-ochratoxin as a final product of the enzymatic reactions in real-time practical information on OTA degradation rate, since in vitro experiments simulated the time that food spends in poultry intestines, as well as their natural pH and temperature conditions.
Asunto(s)
Micotoxinas , Ocratoxinas , Animales , Bovinos , Ocratoxinas/análisis , Bromelaínas , Simulación del Acoplamiento Molecular , Tripsina , Alimentación Animal/análisis , MetaloendopeptidasasRESUMEN
In plants, sexual reproduction relies on the proper development of floral organs that facilitate the successful development of fruits and seeds. Auxin responsive small auxin-up RNA (SAUR) genes play essential roles in floral organ formation and fruit development. However, little is known about the role of SAUR genes in pineapple floral organ formation and fruit development as well as stress responses. In this study, based on genome information and transcriptome datasets, 52 AcoSAUR genes were identified and grouped into 12 groups. The gene structure analysis revealed that most AcoSAUR genes did not have introns, although auxin-acting elements were abundant in the promoter region of AcoSAUR members. The expression analysis across the multiple flower and fruit development stages revealed differential expression of AcoSAUR genes, indicating a tissue and stage-specific function of AcoSAURs. Correlation analysis and pairwise comparisons between gene expression and tissue specificity identified stamen-, petal-, ovule-, and fruit-specific AcoSAURs involved in pineapple floral organs (AcoSAUR4/5/15/17/19) and fruit development (AcoSAUR6/11/36/50). RT-qPCR analysis revealed that AcoSAUR12/24/50 played positive roles in response to the salinity and drought treatment. This work provides an abundant genomic resource for functional analysis of AcoSAUR genes during the pineapple floral organs and fruit development stages. It also highlights the role of auxin signaling involved in pineapple reproductive organ growth.
Asunto(s)
Ananas , Ácidos Indolacéticos , Ácidos Indolacéticos/metabolismo , Frutas , Ananas/metabolismo , ARN/metabolismo , Salinidad , Sequías , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/químicaRESUMEN
Pineapple (Ananas comosus), one of the most flavorful and popular tropical fruits consumed worldwide, is known to contain many volatile organic compounds (VOCs) at varying concentrations. Much attention has been paid to understand which VOC plays a significant role in the sensory aroma notes of the fruit. Though, nearly 480 VOCs have been identified to date using different analytical techniques, only 40 compounds are reported to contribute to the unique flavor of pineapple. A consolidated database of the reported VOCs and key aroma compounds of pineapple is currently not available. This review discusses the available published data regarding the analytical methodologies, volatile profile of different varieties of pineapple at different maturities, and their characteristic aroma compounds. The output of this review is a subset of key pineapple aroma volatiles that can be targeted in analytical method development for utilization in varietal improvement or other research of pineapple.
Asunto(s)
Ananas , Compuestos Orgánicos Volátiles , Odorantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Ananas/química , Compuestos Orgánicos Volátiles/química , Frutas/químicaRESUMEN
Pineapple is one of the most economically important fruits in tropical countries, particularly in Thailand. Canned pineapple is currently Thailand's main exported commodity to many countries, including the United States, Russia, Germany, Poland, and Japan. Fungal diseases are considered a permanent threat to fruits in the pre- and post-harvest stages, leading to considerable economic losses. Fungal disease is one of the primary causes of massive yield losses in pineapples around the world. Colletotrichum species are the most common fungal pathogens affecting different tropical fruits. Although there are many reports regarding Colletotrichum species associated with pineapple, they do not have molecular data to confirm species identification. However, the occurrence of Colletotrichum species on pineapple has not been reported in Thailand so far. In this study, we isolated and identified Colletotrichum fructicola on pineapple in northern Thailand and have proven its pathogenicity to the host. This is the first report of the occurrence of Colletotrichum in pineapple, based on morpho-molecular approaches.