Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.722
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38980349

RESUMEN

PURPOSE: This study aimed to investigate the effects of subconjunctival injection of aflibercept, a soluble protein decoy for VEGFR-1 and VEGFR-2, on corneal angiogenesis and VEGFR-expressing CD11b+ cells in a mouse model of suture-induced corneal neovascularization. METHODS: Corneal neovascularization was induced in BALB/c mice by placing three sutures on the cornea. Immediately after surgery, either 200 µg aflibercept (5 µL) or an equal volume of phosphate-buffered saline (PBS) was administered into the subconjunctival space. Seven days after later, corneal new vessels were quantified through clinical examination and measurement of the CD31-stained area in corneal flat mounts. The levels of pro-angiogenic and inflammatory markers in the cornea were evaluated using RT-qPCR. The percentages of VEGFR-2+CD11b+ cells and VEGFR-3+CD11b+ cells were analyzed in the cornea, blood, and draining cervical lymph nodes (DLNs) using flow cytometry. RESULTS: Subconjunctival injection of aflibercept significantly reduced the growth of corneal new vessels compared to subconjunctival PBS injection. The mRNA levels of Cd31, vascular growth factors (Vegfc and Angpt1), and pro-angiogenic/inflammatory markers (Tek/Tie2, Mrc1, Mrc2, and Il6) in the cornea were downregulated by subconjunctival aflibercept. Also, the percentage of VEGFR-3+CD11b+ cells in the cornea, blood, and DLNs was decreased by aflibercept, whereas that of VEGFR-2+CD11b+ cells was unaffected. CONCLUSION: Subconjunctival aflibercept administration inhibits inflammatory angiogenesis in the cornea and reduces the numbers of cornea-infiltrating and circulating VEGFR-3+CD11b+ cells.

2.
Tissue Eng Regen Med ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976146

RESUMEN

BACKGROUND: The extracellular vesicles (EVs) secreted by adipose tissue-derived stromal cells (ASC) are microenvironment modulators in tissue regeneration by releasing their molecular cargo, including miRNAs. However, the influence of ASC-derived extracellular vesicles (ASC-EVs) on endothelial cells (ECs) and vascularisation is poorly understood. The present study aimed to determine the pro-angiogenic effects of ASC-EVs and explore their miRNA profile. METHODS: EVs were isolated from normoxic and hypoxic cultured ASC conditioned culture medium. The miRNA expression profile was determined by miRseq, and EV markers were determined by Western blot and immunofluorescence staining. The uptake dynamics of fluorescently labelled EVs were monitored for 24 h. ASC-EVs' pro-angiogenic effect was assessed by sprouting ex vivo rat aorta rings in left ventricular-decellularized extracellular matrix (LV dECM) hydrogel or basement membrane hydrogel (Geltrex®). RESULTS: ASC-EVs augmented vascular network formation by aorta rings. The vascular network topology and stability were influenced in a hydrogel scaffold-dependent fashion. The ASC-EVs were enriched for several miRNA families/clusters, including Let-7 and miR-23/27/24. The miRNA-1290 was the highest enriched non-clustered miRNA, accounting for almost 20% of all reads in hypoxia EVs. CONCLUSION: Our study revealed that ASC-EVs augment in vitro and ex vivo vascularisation, likely due to the enriched pro-angiogenic miRNAs in EVs, particularly miR-1290. Our results show promise for regenerative and revascularisation therapies based on ASC-EV-loaded ECM hydrogels.

3.
FASEB J ; 38(13): e23813, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38976162

RESUMEN

Beta-blockers are commonly used medications that antagonize ß-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.


Asunto(s)
Antagonistas Adrenérgicos beta , Resistencia a Antineoplásicos , Neoplasias , Humanos , Antagonistas Adrenérgicos beta/uso terapéutico , Antagonistas Adrenérgicos beta/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Progresión de la Enfermedad , Receptores Adrenérgicos beta/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
4.
Expert Rev Anticancer Ther ; : 1-11, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38970210

RESUMEN

OBJECTIVES: Due to its anti-angiogenic properties, trebananib is frequently employed in the treatment of cancer patients, particularly those with ovarian cancer. We conducted a meta-analysis to assess the efficacy and safety profile of trebananib in combination with other drugs for treating both ovarian and non-ovarian cancer patients. METHODS: Our search encompassed PubMed, Medline, Cochrane, and Embase databases, with a focus on evaluating study quality. Data extraction was conducted from randomized controlled trials (RCTs), and RevMan 5.3 facilitated result analysis. RESULTS: Combining trebananib with other drugs extended progression-free survival (PFS) [HR 0.81, (95%CI: 0.65, 0.99), p = 0.04] and overall survival (OS) [HR 0.88, (95%CI: 0.79, 1.00), p = 0.04] in ovarian cancer patients. Ovarian cancer patients exhibited a higher objective response rate (ORR) with trebananib compared to non-ovarian cancer cohorts. Moreover, the incorporation of trebananib into the standard treatment regimen for malignant tumors did not significantly elevate drug-related adverse events [RR 1.05, (95% CI: 1.00, 1.11), p = 0.05]. CONCLUSION: Trebananib plus other drugs can improve the PFS, OS and ORR in patients with cancer, especially ovarian cancer. Our recommendation is to use trebananib plus other drugs to treat advanced cancer, and to continuously monitor and manage drug-related adverse events. REGISTRATION: PROSPERO (No. CRD42023466988).

5.
Front Immunol ; 15: 1405597, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983846

RESUMEN

Endometriosis (EM) is defined as the engraftment and proliferation of functional endometrial-like tissue outside the uterine cavity, leading to a chronic inflammatory condition. While the precise etiology of EM remains elusive, recent studies have highlighted the crucial involvement of a dysregulated immune system. The complement system is one of the predominantly altered immune pathways in EM. Owing to its involvement in the process of angiogenesis, here, we have examined the possible role of the first recognition molecule of the complement classical pathway, C1q. C1q plays seminal roles in several physiological and pathological processes independent of complement activation, including tumor growth, placentation, wound healing, and angiogenesis. Gene expression analysis using the publicly available data revealed that C1q is expressed at higher levels in EM lesions compared to their healthy counterparts. Immunohistochemical analysis confirmed the presence of C1q protein, being localized around the blood vessels in the EM lesions. CD68+ macrophages are the likely producer of C1q in the EM lesions since cultured EM cells did not produce C1q in vitro. To explore the underlying reasons for increased C1q expression in EM, we focused on its established pro-angiogenic role. Employing various angiogenesis assays on primary endothelial endometriotic cells, such as migration, proliferation, and tube formation assays, we observed a robust proangiogenic effect induced by C1q on endothelial cells in the context of EM. C1q promoted angiogenesis in endothelial cells isolated from EM lesions (as well as healthy ovary that is also rich in C1q). Interestingly, endothelial cells from EM lesions seem to overexpress the receptor for the globular heads of C1q (gC1qR), a putative C1q receptor. Experiments with siRNA to silence gC1qR resulted in diminished capacity of C1q to perform its angiogenic functions, suggesting that C1q is likely to engage gC1qR in the pathophysiology of EM. gC1qR can be a potential therapeutic target in EM patients that will disrupt C1q-mediated proangiogenic activities in EM.


Asunto(s)
Complemento C1q , Endometriosis , Neovascularización Patológica , Endometriosis/metabolismo , Endometriosis/inmunología , Endometriosis/patología , Endometriosis/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Humanos , Femenino , Neovascularización Patológica/genética , Neovascularización Patológica/inmunología , Células Endoteliales/metabolismo , Células Endoteliales/inmunología , Endometrio/inmunología , Endometrio/metabolismo , Endometrio/patología , Macrófagos/inmunología , Macrófagos/metabolismo , Células Cultivadas , Adulto , Proliferación Celular
6.
J Biomed Mater Res A ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984402

RESUMEN

Injectable in situ-forming scaffolds that induce both angiogenesis and osteogenesis have been proven to be promising for bone healing applications. Here, we report the synthesis of an injectable hydrogel containing cobalt-doped bioactive glass (BG)-loaded microspheres. Silk fibroin (SF)/gelatin microspheres containing BG particles were fabricated through microfluidics. The microspheres were mixed in an injectable alginate solution, which formed an in situ hydrogel by adding CaCl2. The hydrogel was evaluated for its physicochemical properties, in vitro interactions with osteoblast-like and endothelial cells, and bone healing potential in a rat model of calvarial defect. The microspheres were well-dispersed in the hydrogel and formed pores of >100 µm. The hydrogel displayed shear-thinning behavior and modulated the cobalt release so that the optimal cobalt concentration for angiogenic stimulation, cell proliferation, and deposition of mineralized matrix was only achieved by the scaffold that contained BG doped with 5% wt/wt cobalt (A-S-G5Co). In the scaffold containing higher cobalt content, a reduced biomimetic mineralization on the surface was observed. The gene expression study indicated an upregulation of the osteogenic genes of COL1A1, ALPL, OCN, and RUNX2 and angiogenic genes of HIF1A and VEGF at different time points in the cells cultured with the A-S-G5Co. Finally, the in vivo study demonstrated that A-S-G5Co significantly promoted both angiogenesis and osteogenesis and improved bone healing after 12 weeks of follow-up. These results show that incorporation of SF/gelatin microspheres containing cobalt-doped BG in an injectable in situ-forming scaffold can effectively enhance its bone healing potential through promotion of angiogenesis and osteogenesis.

7.
J Ethnopharmacol ; 334: 118531, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971343

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, anti-apoptosis, anti-oxidative stress, and neuroprotection. Ginsenosides Rg1, the main active components isolated from ginseng, may be a feasible therapy for spinal cord injury (SCI). AIMS OF THE STUDY: SCI causes endothelial cell death and blood vessel rupture, ultimately resulting in long-term neurological impairment. As a result, encouraging spinal angiogenesis may be a feasible therapy for SCI. This investigation aimed to validate the capacity of ginsenoside Rg1 in stimulating angiogenesis within the spinal cord. MATERIALS AND METHODS: Rats with SCI were injected intraperitoneally with ginsenoside Rg1. The effectiveness of ginsenoside Rg1 was assessed using the motor function score and the motor-evoked potential (MEP). Immunofluorescence techniques were applied to identify the spinal cord's angiogenesis. Angiogenic factors were examined through Western Blot (WB) and Immunohistochemistry. Oxygen-glucose deprivation (OGD) was employed to establish the hypoxia-ischemia model in vitro, and astrocytes (As) were given ginsenoside Rg1 and co-cultured with spinal cord microvascular endothelial cells (SCMECs). Immunofluorescence, wound healing test, and tube formation assay were used to identify the co-cultured SCMECs' activity. Finally, network pharmacology analysis and siRNA transfection were applied to verify the mechanism of ginsenoside Rg1 promoting angiogenesis. RESULTS: The rats with SCI treated with ginsenoside Rg1 indicated more significant functional recovery, more pronounced angiogenesis, and higher levels of angiogenic factor expression. In vitro, the co-culture system with ginsenoside Rg1 intervention improved SCMECs' capacity for proliferating, migrating, and forming tubes, possibly by promoting the expression of vascular endothelial growth factor (VEGF) in As via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. CONCLUSION: Ginsenoside Rg1 can regulate As to promote angiogenesis, which may help to understand the mechanism of promoting SCI recovery.

8.
Biochem Pharmacol ; : 116414, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972427

RESUMEN

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Angiogenesis plays a pivotal role in LUAD progression via supplying oxygen and nutrients for cancer cells. Non-coding miR-1293, a significantly up-regulated miRNA in LUAD tissues, can be potentially used as a novel biomarker for predicting the prognosis of LUAD patients. However, little information is available about the function of miR-1293 in LUAD progression especially cancer-induced angiogenesis. Herein, we found that miR-1293 knockdown could obviously attenuate LUAD-induced angiogenesis in vitro and down-regulate two most important pro-angiogenic cytokines VEGF-A and bFGF expression and secretion. Indeed, miR-1293 abrogation inactivated the angiogenesis-promoting ERK1/2 signaling characterized by decreased ERK1/2 phosphorylation and translocation from nucleus to cytoplasm. Next we found that miR-1293 knockdown reactivated the endogenous ERK1/2 pathway inhibitor Spry4 expression and Spry4 perturbance with specific siRNA transfection abolished the inhibition of ERK1/2 pathway and LUAD-induced angiogenesis by miR-1293 knockdown. Finally, with in vivo assay, we found obvious Spry4 up-regulation and VEGF-A, bFGF, ERK1/2 phosphorylation, micro-vessel density marker CD31 expression down-regulation in vivo, respectively. Collectively, these results indicated that miR-1293 knockdown could significantly attenuate LUAD angiogenesis via Spry4-mediated ERK1/2 signaling inhibition, which might be helpful for uncovering more functions of miR-1293 in LUAD and providing experimental basis for possible LUAD therapeutic strategy targeting miR-1293.

9.
Fitoterapia ; : 106100, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972550

RESUMEN

Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1ß,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.

10.
Eur J Pharm Sci ; : 106847, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972611

RESUMEN

Exogenous insulin-like growth factor-1 (IGF-1) has been reported to promote wound healing through regulation of vascular endothelial cells (VECs). Despite the existing studies of IGF-1 on VEC and its role in angiogenesis, the mechanisms regarding anti-inflammatory and angiogenetic effects of IGF-1 remain unclear. In this study, we investigated the wound-healing process and the related signaling pathway of IGF-1 using an inflammation model induced by IFN-γ. The results demonstrated that IGF-1 can increase cell proliferation, suppress inflammation in VECs, and promote angiogenesis. In vivo studies further confirmed that IGF-1 can reduce inflammation, enhance vascular regeneration, and improve re-epithelialization and collagen deposition in acute wounds. Importantly, the Ras/PI3K/IKK/NF-κB signaling pathways was identified as the mechanisms through which IGF-1 exerts its anti-inflammatory and pro-angiogenic effects. These findings contribute to the understanding of IGF-1's role in wound healing and may have implications for the development of new wound treatment approaches.

11.
Regen Biomater ; 11: rbae072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974665

RESUMEN

Tissue engineering as an interdisciplinary field of biomedical sciences has raised many hopes in the treatment of cardiovascular diseases as well as development of in vitro three-dimensional (3D) cardiac models. This study aimed to engineer a cardiac microtissue using a natural hybrid hydrogel enriched by granulocyte colony-stimulating factor (G-CSF), a bone marrow-derived growth factor. Cardiac ECM hydrogel (Cardiogel: CG) was mixed with collagen type I (ColI) to form the hybrid hydrogel, which was tested for mechanical and biological properties. Three cell types (cardiac progenitor cells, endothelial cells and cardiac fibroblasts) were co-cultured in the G-CSF-enriched hybrid hydrogel to form a 3D microtissue. ColI markedly improved the mechanical properties of CG in the hybrid form with a ratio of 1:1. The hybrid hydrogel demonstrated acceptable biocompatibility and improved retention of encapsulated human foreskin fibroblasts. Co-culture of three cell types in G-CSF enriched hybrid hydrogel, resulted in a faster 3D structure shaping and a well-cellularized microtissue with higher angiogenesis compared to growth factor-free hybrid hydrogel (control). Immunostaining confirmed the presence of CD31+ tube-like structures as well as vimentin+ cardiac fibroblasts and cTNT+ human pluripotent stem cells-derived cardiomyocytes. Bioinformatics analysis of signaling pathways related to the G-CSF receptor in cardiovascular lineage cells, identified target molecules. The in silico-identified STAT3, as one of the major molecules involved in G-CSF signaling of cardiac tissue, was upregulated in G-CSF compared to control. The G-CSF-enriched hybrid hydrogel could be a promising candidate for cardiac tissue engineering, as it facilitates tissue formation and angiogenesis.

12.
Ann Surg Treat Res ; 107(1): 50-57, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978685

RESUMEN

Purpose: Stem cell-based therapies are considered an alternative approach for critical limb ischemia (CLI) patients with limited or exhausted options, yet their clinical use is limited by the lack of sustainability and unclear mechanism of action. In this study, a substance P-conjugated scaffold was injected with mesenchymal stem cells (MSCs) into an animal model of CLI to verify whether angiogenesis could be enhanced. Methods: A self-assembling peptide (SAP) was conjugated with substance P, known to have the ability to recruit host stem cells into the site of action. This SAP was injected with MSCs into ischemic hindlimbs of rats, and the presence of MSCs was verified by immunohistochemical (IHC) staining of MSC-specific markers at days 7, 14, and 28. The degree of angiogenesis, cell apoptosis, and fibrosis was also quantified. Results: Substance P-conjugated SAP was able to recruit intrinsic MSCs into the ischemic site of action. When injected in combination with MSCs, the presence of both injected and recruited MSCs was found in the ischemic tissues by double IHC staining. This in turn led to a higher degree of angiogenesis, less cell apoptosis, and less tissue fibrosis compared to the other groups at all time points. Conclusion: The combination of substance P-conjugated SAP and MSCs was able to enhance angiogenesis and tissue repair, which was achieved by the additive effect from exogenously administered and intrinsically recruited MSCs. This scaffold-based intrinsic recruitment approach could be a viable option to enhance the therapeutic effects in patients with CLI.

13.
Front Pharmacol ; 15: 1415846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953109

RESUMEN

Diabetic retinopathy is a secondary microvascular complication of diabetes mellitus. This disease progresses from two stages, non-proliferative and proliferative diabetic retinopathy, the latter characterized by retinal abnormal angiogenesis. Pharmacological management of retinal angiogenesis employs expensive and invasive intravitreal injections of biologic drugs (anti-vascular endothelial growth factor agents). To search small molecules able to act as anti-angiogenic agents, we focused our study on axitinib, which is a tyrosine kinase inhibitor and represents the second line treatment for renal cell carcinoma. Axitinib is an inhibitor of vascular endothelial growth factor receptors, and among the others tyrosine kinase inhibitors (sunitinib and sorafenib) is the most selective towards vascular endothelial growth factor receptors 1 and 2. Besides the well-known anti-angiogenic and immune-modulatory functions, we hereby explored the polypharmacological profile of axitinib, through a bioinformatic/molecular modeling approach and in vitro models of diabetic retinopathy. We showed the anti-angiogenic activity of axitinib in two different in vitro models of diabetic retinopathy, by challenging retinal endothelial cells with high glucose concentration (fluctuating and non-fluctuating). We found that axitinib, along with inhibition of vascular endothelial growth factor receptors 1 (1.82 ± 0.10; 0.54 ± 0.13, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) and vascular endothelial growth factor receptors 2 (2.38 ± 0.21; 0.98 ± 0.20, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively), was able to significantly reduce (p < 0.05) the expression of Nrf2 (1.43 ± 0.04; 0.85 ± 0.01, protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in retinal endothelial cells exposed to high glucose, through predicted Keap1 interaction and activation of melanocortin receptor 1. Furthermore, axitinib treatment significantly (p < 0.05) decreased reactive oxygen species production (0.90 ± 0.10; 0.44 ± 0.06, fluorescence units in high glucose vs . axitinib 1 µM, respectively) and inhibited ERK pathway (1.64 ± 0.09; 0.73 ± 0.06, phosphorylated protein levels in fluctuating high glucose vs . axitinib 1 µM, respectively) in HRECs exposed to high glucose. The obtained results about the emerging polypharmacological profile support the hypothesis that axitinib could be a valid candidate to handle diabetic retinopathy, with ancillary mechanisms of action.

14.
Inflammation ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954262

RESUMEN

Long-term inflammation and impaired angiogenesis are thought to be the causes of delayed healing or nonhealing of diabetic wounds. S100A12 is an essential pro-inflammatory factor involved in inflammatory reactions and serves as a biomarker for various inflammatory diseases. However, whether high level of S100A12 exists in and affects the healing of diabetic wounds, as well as the underlying molecular mechanisms, remain unclear. In this study, we found that the serum concentration of S100A12 is significantly elevated in patients with type 2 diabetes. Exposure of stratified epidermal cells to high glucose environment led to increased expression and secretion of S100A12, resulting in impaired endothelial function by binding to the advanced glycation endproducts (RAGE) or Toll-like receptor 4 (TLR4) on endothelial cell. The transcription factor Krüpple-like Factor 5 (KLF5) is highly expressed in the epidermis under high glucose conditions, activating the transcriptional activity of the S100A12 and boost its expression. By establishing diabetic wounds model in alloxan-induced diabetic rabbit, we found that local inhibition of S100A12 significantly accelerated diabetic wound healing by promoting angiogenesis. Our results illustrated the novel endothelial-specific injury function of S100A12 in diabetic wounds and suggest that S100A12 is a potential target for the treatment of diabetic wounds.

15.
Bull Exp Biol Med ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954303

RESUMEN

We present a two-stage model for the study of chronic hind limb ischemia in rats. In the area of ischemia, sclerotic changes with atrophic rhabdomyocytes and reduced vascularization were revealed. CD31 expression in the endothelium increased proportionally to the number of vessels in the ischemic zone, and at the same time, focal expression of ßIII-tubulin was detected in the newly formed nerve fibers. These histological features are equivalent to the development of peripheral arterial disease in humans, which allows using our model in the search for new therapeutic strategies.

16.
Transl Oncol ; 47: 102027, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954974

RESUMEN

OBJECTIVE: Small cell lung cancer (SCLC) is a high-grade neuroendocrine tumor characterized by initial sensitivity to chemotherapy, followed by the development of drug resistance. The underlying mechanisms of resistance in SCLC have not been fully elucidated. Aldo-keto reductase family 1 member C3 (AKR1C3), is known to be associated with chemoradiotherapy resistance in diverse tumors. We aim to evaluate the prognostic significance and immune characteristics of AKR1C3 and investigate its potential role in promoting drug resistance in SCLC. METHODS: 81 postoperative SCLC tissues were used to analyze AKR1C3 prognostic value and immune features. The tissue microarrays were employed to validate the clinical significance of AKR1C3 in SCLC. The effects of AKR1C3 on SCLC cell proliferation, migration, apoptosis and tumor angiogenesis were detected by CCK-8, wound healing assay, transwell assay, flow cytometry and tube formation assay. RESULTS: AKR1C3 demonstrated the highest expression level compared to other AKR1C family genes, and multivariate cox regression analysis identified it as an independent prognostic factor for SCLC. High AKR1C3 expression patients who underwent chemoradiotherapy experienced significantly shorter overall survival (OS). Furthermore, AKR1C3 was involved in the regulation of the tumor immune microenvironment in SCLC. Silencing of AKR1C3 led to the inhibition of cell proliferation and migration, while simultaneously promoting apoptosis and reducing epithelial-mesenchymal transition (EMT) in SCLC. CONCLUSION: AKR1C3 promotes cell growth and metastasis, leading to drug resistance through inducing EMT and angiogenesis in SCLC.

17.
Prostaglandins Other Lipid Mediat ; : 106864, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38955261

RESUMEN

The vasculature of the retina is exposed to systemic and local factors that have the capacity to induce several retinal vascular diseases, each of which may lead to vision loss. Prostaglandin signaling has arisen as a potential therapeutic target for several of these diseases due to the diverse manners in which these lipid mediators may affect retinal blood vessel function. Previous reports and clinical practices have investigated cyclooxygenase (COX) inhibition by nonsteroidal anti-inflammatory drugs (NSAIDs) to address retinal diseases with varying degrees of success; however, targeting individual prostanoids or their distinct receptors affords more signaling specificity and poses strong potential for therapeutic development. This review offers a comprehensive view of prostanoid signaling involved in five key retinal vascular diseases: retinopathy of prematurity, diabetic retinopathy, age-related macular degeneration, retinal occlusive diseases, and uveitis. Mechanistic and clinical studies of these lipid mediators provide an outlook for therapeutic development with the potential to reduce vision loss in each of these conditions.

18.
J Cell Commun Signal ; 18(2): e12031, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38946725

RESUMEN

Transmembrane-4 L-six family member-1 (TM4SF1) is an atypical tetraspanin that is highly and selectively expressed in proliferating endothelial cells and plays an essential role in blood vessel development. TM4SF1 forms clusters on the cell surface called TMED (TM4SF1-enriched microdomains) and recruits other proteins that internalize along with TM4SF1 via microtubules to intracellular locations including the nucleus. We report here that tumor growth and wound healing are inhibited in Tm4sf1-heterozygous mice. Investigating the mechanisms of TM4SF1 activity, we show that 12 out of 18 signaling molecules examined are recruited to TMED on the surface of cultured human umbilical vein endothelial cells (HUVEC) and internalize along with TMED; notable among them are PLCγ and HDAC6. When TM4SF1 is knocked down in HUVEC, microtubules are heavily acetylated despite normal levels of HDAC6 protein, and, despite normal levels of VEGFR2, are unable to proliferate. Together, our studies indicate that pathological angiogenesis is inhibited when levels of TM4SF1 are reduced as in Tm4sf1-heterozygous mice; a likely mechanism is that TM4SF1 regulates the intracellular distribution of signaling molecules necessary for endothelial cell proliferation and migration.

19.
World J Gastroenterol ; 30(23): 2927-2930, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38946872

RESUMEN

In this editorial, we focus specifically on the mechanisms by which pancreatic inflammation affects pancreatic cancer. Cancer of the pancreas remains one of the deadliest cancer types. The highest incidence and mortality rates of pancreatic cancer are found in developed countries. Trends of pancreatic cancer incidence and mortality vary considerably worldwide. A better understanding of the etiology and identification of the risk factors is essential for the primary prevention of this disease. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this editorial, we highlight the foundational studies that have driven our understanding of these processes. In our experimental center, we have carefully studied the mechanisms of that link pancreatic inflammation and pancreatic cancer. We focused on the role of mast cells (MCs). MCs contain pro-angiogenic factors, including tryptase, that are associated with increased angiogenesis in various tumors. In this editorial, we address the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue and adjacent normal tissue. The assessment includes the density of c-Kit receptor-positive MCs, the density of tryptase-positive MCs, the area of tryptase-positive MCs, and angiogenesis in terms of microvascularization density.


Asunto(s)
Mastocitos , Neovascularización Patológica , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/inmunología , Mastocitos/metabolismo , Mastocitos/inmunología , Microambiente Tumoral/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Páncreas/patología , Páncreas/inmunología , Páncreas/metabolismo , Animales , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/inmunología , Factores de Riesgo , Mediadores de Inflamación/metabolismo , Triptasas/metabolismo , Inflamación/metabolismo
20.
Int J Nanomedicine ; 19: 6485-6497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38946886

RESUMEN

Angiogenesis is a physiological process of forming new blood vessels that has pathological importance in seemingly unrelated illnesses like cancer, diabetes, and various inflammatory diseases. Treatment targeting angiogenesis has shown promise for these types of diseases, but current anti-angiogenic agents have critical limitations in delivery and side-effects. This necessitates exploration of alternative approaches like biomolecule-based drugs. Proteins, lipids, and oligonucleotides have recently become popular in biomedicine, specifically as biocompatible components of therapeutic drugs. Their excellent bioavailability and potential bioactive and immunogenic properties make them prime candidates for drug discovery or drug delivery systems. Lipid-based liposomes have become standard vehicles for targeted nanoparticle (NP) delivery, while protein and nucleotide NPs show promise for environment-sensitive delivery as smart NPs. Their therapeutic applications have initially been hampered by short circulation times and difficulty of fabrication but recent developments in nanofabrication and NP engineering have found ways to circumvent these disadvantages, vastly improving the practicality of biomolecular NPs. In this review, we are going to briefly discuss how biomolecule-based NPs have improved anti-angiogenesis-based therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Neovascularización Patológica , Nanomedicina Teranóstica , Humanos , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/administración & dosificación , Nanomedicina Teranóstica/métodos , Neovascularización Patológica/tratamiento farmacológico , Animales , Liposomas/química , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Oligonucleótidos/química , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacocinética , Oligonucleótidos/farmacología , Proteínas/química , Proteínas/administración & dosificación , Lípidos/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA