Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 508
Filtrar
1.
J Environ Manage ; 365: 121610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955048

RESUMEN

Effective elimination of heavy metals from complex wastewater is of great significance for industrial wastewater treatment. Herein, bimetallic adsorbent Fe3O4-CeO2 was prepared, and H2O2 was added to enhance Sb(V) adsorption by Fe3O4-CeO2 in complex wastewater of Sb(V) and aniline aerofloat (AAF) for the first time. Fe3O4-CeO2 showed good adsorption performance and could be rapidly separated by external magnetic field. After five adsorption/desorption cycles, Fe3O4-CeO2 still maintained good stability. The maximum adsorption capacities of Fe3O4-CeO2 in single Sb(V), AAF + Sb(V), and H2O2+AAF + Sb(V) systems were 77.33, 70.14, and 80.59 mg/g, respectively. Coexisting AAF inhibited Sb(V) adsorption. Conversely, additional H2O2 promoted Sb(V) removal in AAF + Sb(V) binary system, and made the adsorption capacity of Fe3O4-CeO2 increase by 14.90%. H2O2 could not only accelerate the reaction rate, but also reduce the optimal amount of adsorbent from 2.0 g/L to 1.2 g/L. Meanwhile, coexisting anions had little effect on Sb(V) removal by Fe3O4-CeO2+H2O2 process. The adsorption behaviors of Sb(V) in three systems were better depicted by pseudo-second-order kinetics, implying that the chemisorption was dominant. The complexation of AAF with Sb(V) hindered the adsorption of Sb(V) by Fe3O4-CeO2. The complex Sb(V) was oxidized and decomposed into free state by hydroxyl radicals produced in Fe3O4-CeO2+H2O2 process. Then the free Sb(V) was adsorbed by Fe3O4-CeO2 mostly through outer-sphere complexation. This work provides a new tactic for the treatment of heavy metal-organics complex wastewater.


Asunto(s)
Peróxido de Hidrógeno , Aguas Residuales , Aguas Residuales/química , Peróxido de Hidrógeno/química , Adsorción , Contaminantes Químicos del Agua/química , Compuestos de Anilina/química , Cerio/química
2.
Environ Pollut ; 358: 124534, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004207

RESUMEN

This study explores novel nanoparticles used in environmental remediation of 4-nitrophenol and aniline from wastewater bodies. The Zn0.5Ni0.5FeCrO4 magnetic nanoparticles (MNPs) were synthesized using tragacanth gel as a green, low-cost, and easy sol-gel method. The MNPs were characterized by XRD, XPS, FT-IR, VSM, TEM, EDX, FESEM, BET, DRS, and elemental mapping. The analysis demonstrated that nanoparticles have a spinel cubic structure, spatial distribution of the elements, ferromagnetic activity, narrow bandgap, and uniform morphology. Furthermore, effectiveness of the developed MNPs to degrade recalcitrant organic pollutants such as 4-nitrophenol (4-NP) and aniline under visible light exposure were studied. The results indicated 95% aniline and 80% of 4-NP were successfully degraded in 180 and 150 min, respectively. The total organic carbon (TOC) analysis revealed 65% and 54% removal of aniline and 4-NP. LC-MS was employed to elucidate the photodegradation mechanism and to identify the degradation products, including small fragmented molecules.

3.
Anal Chim Acta ; 1316: 342865, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969412

RESUMEN

BACKGROUND: Nitroaromatic compounds are inherently hazardous and explosive, so convenient and rapid detection strategies are needed for the sake of human health and the environment. There is an urgent demand for chemical sensing materials that offer high sensitivity, operational simplicity, and recognizability to effectively monitor nitroaromatic residues in industrial wastewater. Despite its importance, the mechanisms underlying fluorescence quenching or enhancement in fluorescent sensing materials have not been extensively researched. The design and synthesis of multiresponsive fluorescent sensing materials have been a great challenge until now. RESULTS: In this study, a one-dimensional Cd-based fluorescent porous coordination polymer (Cd-CIP-1) was synthesized using 5-(4-cyanobenzyl)isophthalic acid (5-H2CIP) and 4,4'-bis(1-imidazolyl)biphenyl (4,4'-bimp) and used for the selective detection of nitrobenzene in aqueous solution by fluorescence quenching, with a limit of detection of 1.38 × 10-8 mol L-1. The presence of aniline in the Cd-CIP-1 solution leads to the enhancement of fluorescence property. Density functional theory and time-dependent density functional theory calculations were carried out to elucidate the mechanisms of the fluorescence changes. This study revealed that the specific pore size of Cd-CIP-1 facilitates analyte screening and enhances host-guest electron coupling. Furthermore, π-π interactions and hydrogen bond between Cd-CIP-1 and the analytes result in intermolecular orbital overlap and thereby boosting electron transfer efficiency. The different electron flow directions in NB@Cd-CIP-1 and ANI@Cd-CIP-1 lead to fluorescence quenching and enhancement. SIGNIFICANCE AND NOVELTY: The multiresponsive coordination polymer (Cd-CIP-1) can selectively detect nitrobenzene and recognize aniline in aqueous solutions. The mechanism of fluorescence quenching and enhancement has been thoroughly elucidated through a combination of density functional theory and experimental approaches. This study presents a promising strategy for the practical implementation of a multiresponsive fluorescent chemical sensor.

4.
Beilstein J Org Chem ; 20: 1468-1475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978743

RESUMEN

A catalyst- and additive-free synthesis of 2-benzyl N-substituted anilines from (E)-2-arylidene-3-cyclohexenones and primary amines has been reported. The reaction proceeds smoothly through a sequential imine condensation-isoaromatization pathway, affording a series of synthetically useful aniline derivatives in acceptable to high yields. Mild reaction conditions, no requirement of metal catalysts, operational simplicity and the potential for scale-up production are some of the highlighted advantages of this transformation.

5.
Molecules ; 29(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38930915

RESUMEN

Organic arsenic compounds such as p-aminophenylarsine oxide (p-APAO) are easier for structural optimization to improve drug-like properties such as pharmacokinetic properties, therapeutic efficacy, and target selectivity. In order to strengthen the selectivity of 4-(1,3,2-dithiarsinan-2-yl) aniline 7 to tumor cell, a thiourea moiety was used to strengthen the anticancer activity. To avoid forming a mixture of α/ß anomers, the strategy of 2-acetyl's neighboring group participation was used to lock the configuration of 2,3,4,6-tetra-O-acetyl-ß-d-glucopyranosyl isothiocyanate from 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide. 1-(4-(1,3,2-dithiarsinan-2-yl) aniline)-2-N-(2,3,4,6-tetra-O-acetyl-ß-d-glucopyranos-1-yl)-thiourea 2 can increase the selectivity of human colon cancer cells HCT-116 (0.82 ± 0.06 µM vs. 1.82 ± 0.07 µM) to human embryonic kidney 293T cells (1.38 ± 0.01 µM vs. 1.22 ± 0.06 µM) from 0.67 to 1.68, suggesting a feasible approach to improve the therapeutic index of arsenic-containing compounds as chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Tiourea , Humanos , Tiourea/química , Tiourea/farmacología , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Glucosa/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HCT116 , Estructura Molecular , Arsenicales/química , Arsenicales/farmacología , Arsenicales/síntesis química , Relación Estructura-Actividad
6.
Chembiochem ; : e202400428, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940076

RESUMEN

Biocatalysis has played a limited role in the early stages of drug discovery. This is often attributed to the limited substrate scope of enzymes not affording access to vast areas of novel chemical space. Here, we have shown a promiscuous nitroreductase enzyme (NR-55) can be used to produce a panel of functionalised anilines from a diverse panel of aryl nitro starting materials. After screening on analytical scale, we show that sixteen substrates could be scaled to 1 mmol scale, with several poly-functional anilines afforded with ease under the standard conditions. The aniline products were also screened for activity against several cell lines of interest, with modest activity observed for one compound. This study demonstrates the potential for nitroreductase biocatalysis to provide access to functional fragments under benign conditions.

7.
J Agric Food Chem ; 72(26): 14984-14992, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907719

RESUMEN

Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 µM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 µM) or boscalid (EC50 = 2.01 µM) and fluxapyroxad (EC50 = 4.35 µM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.


Asunto(s)
Botrytis , Fungicidas Industriales , Botrytis/efectos de los fármacos , Botrytis/crecimiento & desarrollo , Relación Estructura-Actividad , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Enfermedades de las Plantas/microbiología , Niacinamida/química , Niacinamida/farmacología , Niacinamida/análogos & derivados , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Compuestos de Bifenilo
8.
Small ; : e2404334, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864215

RESUMEN

Pb-related imperfections (surface or halide vacancy induced uncoordinated Pb2+, Pb-I antisite, and Pb2+ vacancy defects) of the ionic crystal perovskite film seriously restrict the photovoltaic performance of perovskite solar cells (PSCs). Here, an aniline derivative N-(4-cyanophenyl)acetamide (CAL) is rationally designed, incorporating bilateral functional sites of cyano and acetyl groups, acting as Lewis base molecule for managing the Pb-related imperfections in perovskite surface through post-treatment. Theoretical calculation and experimental verification together proved the reduced defect density, improved crystallinity, and inhibited ion migration in the CAL-modified perovskite. Precisely, cyano as a side group and acetyl as another side group can both coordinate with Pb2+ for its low electrostatic potential energy. Further, the aniline core and the π-π conjugate structure in the benzene ring of the ligand tend to form a dimer to improve the mobility for carrier transportation and collection. The strategy demonstrates a champion PCE of 24.35% for the air-processed PSCs with over 1200 hours of maximum power point tracking (MPPT) stability. This study presents a comprehensive approach to overcoming the current Pb-related imperfections induced limitations in PSCs, paving the way for their integration into mainstream solar technologies.

9.
Chemosphere ; : 142688, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38942243

RESUMEN

To explore the intrinsic influence of different salinity content on aniline biodegradation system in high temperature condition of 35±1 °C, six groups at various salinity concentration (0.0%-5.0%) were applied. The results showed that the salinity exerted insignificant impact on aniline removal performance. The low-level salinity (0.5%-1.5%) stimulated the nitrogen metabolism performance. The G5-2.5% had excellent adaptability to salinity while the nitrogen removal capacity of G6-5.0% was almost lost. Moreover, high throughput sequencing analysis revealed that the g__norank_f__NS9_marine_group, g__Thauera and g__unclassified_f__Rhodobacteraceae proliferated wildly and established positive correlation each other in low salinity systems. The g__SM1A02 occupying the dominant position in G5 ensured the nitrification performance. In contrast, the Rhodococcus possessing great survival advantage in tremendous osmotic pressure competed with most functional genus, triggering the collapse of nitrogen metabolism capacity in G6. This work provided valuable guidance for the aniline wastewater treatment under salinity stress in high temperature condition.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124574, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838601

RESUMEN

An electrochemiluminescence (ECL) biosensor based on ECL resonance energy transfer (ECL-RET) was designed to sensitively detect hepatitis B virus surface antigen (HBsAg). In this ECL-RET system, luminol was employed as ECL donor, and gold nanoparticles functionalized zirconium organoskeleton (UiO-66-NH2@Au) was prepared and served as ECL acceptor. The UiO-66-NH2@Au possessed an ultraviolet-visible (UV-vis) absorption between 400 nm and 500 nm, and the absorption spectra overlapped with the ECL spectrum of luminol. Furthermore, Graphene oxide-poly(aniline-luminol)-cobalt nanoparticles conjugates (GO-PALu-Co) was prepared to optimize the ECL behavior through the catalysis of Cobalt nanoparticles and served as a stable 3D porous film to load capture probe primary antibody (Ab1). Based on the ECL-RET biosensing method, the UiO-66-NH2@Au-labeled Ab2 and target HBsAg could pair with primary antibody Ab1 to form sandwich-type structure, and the ECL signal of GO-PALu-Co was quenched. Under optimized experimental conditions, the ECL-RET analytical method represented eminent analytical performance for HBsAg detection with a wide linear relationship from 2.2 × 10-13 to 2.2 × 10-5 mg/mL, and a detection limit of 9 × 10-14 mg/mL (S/N = 3), with spiked sample recoveries ranging from 97.27 % to 102.73 %. The constructed sensor has good stability, reproducibility, and specificity. It can be used to detect HBsAg in human serum and has the potential to be used for the sensitive detection of other disease biomarkers.


Asunto(s)
Técnicas Biosensibles , Cobalto , Técnicas Electroquímicas , Oro , Grafito , Antígenos de Superficie de la Hepatitis B , Mediciones Luminiscentes , Luminol , Luminol/química , Cobalto/química , Antígenos de Superficie de la Hepatitis B/análisis , Antígenos de Superficie de la Hepatitis B/sangre , Oro/química , Técnicas Electroquímicas/métodos , Mediciones Luminiscentes/métodos , Humanos , Grafito/química , Técnicas Biosensibles/métodos , Porosidad , Límite de Detección , Nanopartículas del Metal/química , Circonio/química , Transferencia de Energía
11.
Chemphyschem ; : e202400550, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798156

RESUMEN

Extensive research has already provided reliable methods for the in silico prediction of pKa, while a trustworthy strategy for pKb determination is still being sought. Indeed, the approaches previously exploited for computing pKa have shown their weakness in predicting pKb. In the light of the exceptional reliability demonstrated in the pKa calculation of a wide panel of organic acids, in this work, we exploited our "easy to use methodology", based on the direct approach, to predict the pKb of primary amines. Herein, CAM-B3LYP was compared to WB97XD and B3PW91, exploring the solvation model based on density (SMD) and the polarizable continuum model (PCM), in the presence of two explicit water molecules. Noteworthy, CAM-B3LYP and WB97XD returned completely different solvent accessible surfaces (SAS) and electron potential maps (EPM) for the bases and the conjugated acids, independently from the nature of the substituents. Once again, CAM-B3LYP/SMD/2H2O method confirmed its remarkable reliability, leading to a minimum average error (MAE) lower than 0.3. This outstanding result strengthens the trustworthiness of our method, already successfully applied to predict the pKa of different substituted phenols and carboxylic acids. Thus, our "easy-to-use" process can predict also the pKb of primary ammines and anilines, always ensuring consistent outputs.

12.
Angew Chem Int Ed Engl ; : e202407979, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818676

RESUMEN

Radical ipso-substitution offers an alternative to organometallic approaches for biaryl synthesis, but usually requires stoichiometric reagents such as tributyltin hydride. Here, we demonstrate that visible light photoredox catalysis can be used for ipso-biaryl synthesis, via a halogen-atom transfer (XAT) regime. Using amide substrates that promote ipso- over unwanted ortho-addition, we demonstrate smooth biaryl formation with no constraint on the electronic character of the migrating arene ring. The photoreaction can be combined in one operation to achieve a formal arylation of the inert aniline C-N bond.

13.
ACS Appl Mater Interfaces ; 16(19): 25090-25100, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709646

RESUMEN

The selective electrocatalytic reduction of nitrobenzene (NB) to aniline demands a desirable cathodic catalyst to overcome the challenges of the competing hydrogen evolution reaction (HER), a higher overpotential, and a lower selectivity. Here, we deposit Co-doped 1T MoS2 on Ti mesh by the solvothermal method with different doping percentages of Co as x % Co-MoS2 (where x = 3, 5, 8, 10, and 12%). Because of the lowest overpotential, lower charge-transfer resistance, strong suppression of the competing HER, and higher electrochemical surface area, 8% Co-MoS2 achieves 94% selectivity of aniline with 54% faradaic efficiency. The reduction process follows first-order dynamics with a reaction coefficient of 0.5 h-1. Besides, 8% Co-MoS2 is highly stable and retains 81% selectivity even after 8 cycles. Mechanistic studies showed that the selective and exothermic adsorption of the nitro group at x % Co-MoS2 leads to a higher rate of NB reduction and higher selectivity of aniline. The aniline product is successfully removed from the solution by polymerization at FTO. This study signifies the impact of doping metal atoms in tuning the electronic arrangement of 1T-MoS2 for the facilitation of organic transformations.

14.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 543-549, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38721416

RESUMEN

Two 2,4,6-tri-methyl-aniline-based trifuloro-methane-sulfonate (tri-fluoro-methane-sulfonate) salts were synthesized and characterized by single-crystal X-ray diffraction. N,2,4,6-Tetra-methyl-anilinium tri-fluoro-methane-sulfonate, [C10H14NH2 +][CF3O3S-] (1), was synthesized via methyl-ation of 2,4,6-tri-methyl-aniline. N-Iso-propyl-idene-N,2,4,6-tetra-methyl-anilinium tri-fluoro-meth-ane-sulfonate, [C13H20N+][CF3O3S-] (2), was synthesized in a two-step reaction where the imine, N-iso-propyl-idene-2,4,6-tri-methyl-aniline, was first prepared via a dehydration reaction to form the Schiff base, followed by methyl-ation using methyl tri-fluoro-methane-sulfonate to form the iminium ion. In compound 1, both hydrogen bonding and π-π inter-actions form the main inter-molecular inter-actions. The primary inter-action is a strong N-H⋯O hydrogen bond with the oxygen atoms of the tri-fluoro-methane-sulfonate anions bonded to the hydrogen atoms of the ammonium nitro-gen atom to generate a one-dimensional chain. The [C10H14NH2 +] cations form dimers where the benzene rings form a π-π inter-action with a parallel-displaced geometry. The separation distance between the calculated centroids of the benzene rings is 3.9129 (8) Å, and the inter-planar spacing and ring slippage between the dimers are 3.5156 (5) and 1.718 Å, respectively. For 2, the [C13H20N+] cations also form dimers as in 1, but with the benzene rings highly slipped. The distance between the calculated centroids of the benzene rings is 4.8937 (8) Å, and inter-planar spacing and ring slippage are 3.3646 (5) and 3.553 Å, respectively. The major inter-molecular inter-actions in 2 are instead a series of weaker C-H⋯O hydrogen bonds [C⋯O distances of 3.1723 (17), 3.3789 (18), and 3.3789 (18) Å], an inter-action virtually absent in the structure of 1. Fluorine atoms are not involved in strong directional inter-actions in either structure.

15.
Anal Chim Acta ; 1310: 342697, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811140

RESUMEN

BACKGROUND: Aniline serves as a pivotal precursor in many industries such as pesticides, pharmaceuticals, and chemicals. However, its ingestion can lead to severe health consequences, including the potential to induce cancer, respiratory tract irritation, and adverse effects on the nervous and digestive systems in the human body. The widespread use of aniline in industrial processes, coupled with inadequate wastewater management that allows for the direct release of aniline into the environment, leads to surface and groundwater contamination. Therefore, it becomes crucial to devise a reliable electrochemical sensor capable of detecting even trace amounts of aniline. RESULTS: This study presents a modified polyol synthesis method for producing silver nanorods (AgNRs, length: 861-1345 nm, diameter: 66-107 nm) with preferential growth along the (111) crystal plane. Immobilizing AgNRs on a glassy carbon (GC) electrode with Nafion as a binder decreases its charge transfer resistance from 3040 to 129 kΩ and increases its electroactive area from 0.034 to 0.101 cm2. AgNRs/GC electrode exhibited an aniline detection limit of 0.032 µM and sensitivity of 1.4841 µA.M-1cm-2 within a linear range of 0-10 µM using square wave voltammetry (SWV). The reaction rate constant of aniline sensing was determined to be 0.08697 s-1. Chlorobenzene, acephate, and chlorpyrifos could not interfere aniline detection, and 26 % decrease in peak response was observed after the 10th cycle of aniline sensing. The sensor demonstrated ∼100 % recovery for aniline, comparable to the performance of high-performance liquid chromatography when applied to real-world samples like tap and river water. SIGNIFICANCE: The electrochemical sensing of aniline is notably efficient in tap and river water within the acceptable limit, by utilizing one dimensional AgNRs functionalized GC electrode. Importantly, the presence of interferents does not compromise the sensitivity of the sensor. Therefore, one dimensional AgNRs synthesized via a modified polyol route emerge as a promising electrocatalyst for the in-situ detection and determination of aniline.

16.
ACS Appl Bio Mater ; 7(5): 3258-3270, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38593039

RESUMEN

Reliable in vitro models closely resembling native tissue are urgently needed for disease modeling and drug screening applications. Recently, conductive biomaterials have received increasing attention in the development of in vitro models as they permit exogenous electrical signals to guide cells toward a desired cellular response. Interestingly, they have demonstrated that they promote cellular proliferation and adhesion even without external electrical stimulation. This paper describes the development of a conductive, fully synthetic hydrogel based on hybrids of the peptide-modified polyisocyanide (PIC-RGD) and the relatively conductive poly(aniline-co-N-(4-sulfophenyl)aniline) (PASA) and its suitability as the in vitro matrix. We demonstrate that incorporating PASA enhances the PIC-RGD hydrogel's electroactive nature without significantly altering the fibrous architecture and nonlinear mechanics of the PIC-RGD network. The biocompatibility of our model was assessed through phenotyping cultured human foreskin fibroblasts (HFF) and murine C2C12 myoblasts. Immunofluorescence analysis revealed that PIC-PASA hydrogels inhibit the fibrotic behavior of HFFs while promoting myogenesis in C2C12 cells without electrical stimulation. The composite PIC-PASA hydrogel can actively change the cell fate of different cell types, providing an attractive tool to improve skin and muscle repair.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Ensayo de Materiales , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Animales , Ratones , Desarrollo de Músculos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Tamaño de la Partícula , Fibroblastos/efectos de los fármacos , Línea Celular , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Conductividad Eléctrica
17.
Artículo en Inglés | MEDLINE | ID: mdl-38599346

RESUMEN

Aniline (C6H5NH2) is one of the hazardous aromatic amine where an amino group -NH2) is connected to phenyl ring (C6H5). Based on the evaluation of the 96-hour LC50 of aniline, two sublethal concentrations (4.19 mg/l and 8.39 mg/l) were selected for acute exposure tests in freshwater fish Channa punctatus. The liver, gills and kidney of fish being the principal sites of xenobiotic material accumulation, respiration, biotransformation, and excretion are the focus of the present study. Throughout the exposure time, the comet assay revealed increased tail length and tail DNA percentage indicating maximum damage to liver, gills and kidney of treated group after 96 h. After acute exposure, there was a significant (p ≤ 0.05) increase in the enzymatic activity of glutathione-S-transferase (GST) and acetylcholinesterase (AChE), whereas decline in superoxide dismutase (SOD) and catalase (CAT) activity was observed. Meanwhile, levels of malondialdehyde (MDA) increased over the exposure period for both concentrations. After 96 h of exposure, degree of tissue change (DTC) was evaluated in liver, gill and kidney of aniline exposed fish. Additionally, light microscopy revealed multiple abnormalities in liver, gills and kidney of all the treated groups. Significant changes were observed in the levels of biochemical markers viz., glucose, triglyceride, cholesterol, aspartate transaminase, alanine transaminase and urea following a 96-hour exposure to aniline. Studies using ATR-FTIR and transmission electron microscopy (TEM) revealed changes in biomolecules and structural abnormalities in several tissues of the aniline-exposed groups in comparison to the control group respectively.


Asunto(s)
Compuestos de Anilina , Branquias , Riñón , Hígado , Contaminantes Químicos del Agua , Animales , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Branquias/ultraestructura , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Compuestos de Anilina/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Contaminantes Químicos del Agua/toxicidad , Peces/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pruebas de Toxicidad Aguda , Agua Dulce , Channa punctatus
18.
Environ Sci Pollut Res Int ; 31(16): 23979-23994, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38436846

RESUMEN

The sulfate radical-based advanced oxidation processes (SR-AOPs) is a promising method for the degradation of pollutants, with the development of highly efficient catalysts for persulfate activation has been widely concerned. The novel BiCoFe-LDH (BCF-x) was synthesized successfully by coprecipitation method, which can activate peroxydisulfate (PDS) efficiently to degrade aniline. Comparative analysis with pure CoFe-LDH revealed a remarkable increase in reaction rate constant by approximately 14.66 times; the degradation rate of aniline (10 mg/L) was 100% in 60 min with the condition of 0.5 g/L BCF-1.5 and 0.5 g/L PDS, due to BCF-1.5 which was characterized as a complex of CoFe-LDH and Bi2O2CO3, promoting electron transport to improve the efficiency of activated PDS. In the reaction system, SO4•-, ·OH, and 1O2 were responsible for the aniline degradation and ·OH was the primary one. Furthermore, this work proposes a reaction electron transfer catalytic mechanism, which provided a new insight and good application prospect for efficient activation of PDS for pollutant degradation.


Asunto(s)
Compuestos de Anilina , Contaminantes Ambientales , Catálisis , Transporte de Electrón , Electrones , Oxidación-Reducción
19.
Polymers (Basel) ; 16(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543388

RESUMEN

A new type of benzoxazine resin has been synthesized using a natural phenol source, guaiacol, and a biomass amines, furfuramine. The synthesis conditions were optimized; when the reaction molar ratio of guaiacol, furfuramine, and polyformaldehyde was 1:1:4, the highest synthetic yield was reached. The product was characterized via testing using transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), mass spectrogram (MS), and nuclear magnetic resonance (1H-NMR) to confirm its molecular structure. A differential scanning calorimetry (DSC) test was conducted to analyze the thermodynamic properties of the product, and the results showed that the product decomposed and evaporated at around 180 °C, making it impossible to achieve self-curing. However, the prepared guaiacol-furfuramine benzoxazine resin (GFZ) can be blended and cured in certain proportions with bisphenol A-aniline oxazine resin (BAZ) as a GFZ/BAZ binary system (5:95, 10:90, 20:80, and 40:60). Dynamic mechanical analysis (DMA) test results showed that when the content of GFZ was 10%, the storage modulus of the copolymer resin was greatly improved. After conducting impact strength tests on the copolymer resin, it was found that the toughness of the copolymer resin had improved, and the maximum impact strength had increased by nearly three times. This indicates that the flexible long-chain structure in GFZ can effectively improve the toughness of the cured copolymer system. The reaction of active groups on benzoxazine molecules with other resins can not only improve the mechanical properties of their cured products, but also has important significance in the preparation of low-cost and environmentally friendly sustainable composite materials with excellent comprehensive performance.

20.
Methods Mol Biol ; 2791: 97-105, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532096

RESUMEN

Knowledge of detailed reproductive biology of cultivated species is important as requirements for fruit and seed production allow the development of effective management strategies and a sustainable use. Embryological processes of common buckwheat (Fagopyrum esculentum Moench) are difficult to interpret due to the influence of genetic determinants, i.e., dimorphic heterostyly resulting in the production of long- and short-styled flowers, and environmental predisposition, i.e., sensitivity of ovules to thermal stress. Furthermore, the situation is complicated by overproduction of flowers and depletion of resources as the plant ages. Herein we provide protocols that allow to visualize both basic and more specific embryological features and also disturbances in sexual reproduction of common buckwheat resulting from external and internal factors. All stages of plant material fixation, preparation, staining, and observation are described and explained in detail. Technical tips and pictures of properly prepared microscopic sections are also provided.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Flores/genética , Reproducción , Genotipo , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA