Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1398135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751785

RESUMEN

The discovery of new therapeutic alternatives for cancer treatment is essential for improving efficacy and specificity, overcoming resistance, and enabling a more personalized approach for each patient. We investigated the antitumor activity of the crude ethanolic extract of the fungus Trichoderma asperelloides (ExtTa) and its interaction with chemotherapeutic drugs. It was observed, by MTT cytotoxicity assay, that ExtTa significantly reduced cell viability in breast adenocarcinoma, glioblastoma, lung carcinoma, melanoma, colorectal carcinoma, and sarcomas cell lines. The highest efficacy and selectivity of ExtTa were found against glioblastoma T98G and colorectal HCT116 cell lines. ExtTa is approximately four times more cytotoxic to those tumor cells than to non-cancer cell lines. A synergistic effect between ExtTa and doxorubicin was found in the treatment of osteosarcoma Saos-2 cells, as well as with 5-fluorouracil in the treatment of HCT116 colorectal carcinoma cells using CompuSyn software. Our data unravel the presence of bioactive compounds with cytotoxic effects against cancer cells present in T. asperelloides ethanolic crude extract, with the potential for developing novel anticancer agents.

2.
Curr Top Med Chem ; 22(11): 957-972, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34749610

RESUMEN

The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus, and Research Gate were carried out using keywords such as "garlic", "garlic bioactive compounds", "anticancer mechanisms of garlic", "nutritional composition of garlic", and others. Garlic contains several phytoconstituents with activities against cancer, and compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic- derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions, and thus, they could be used to inhibit the induction, development, and progression of cancer. The review describes the nutritional composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.


Asunto(s)
Antineoplásicos , Productos Biológicos , Ajo , Antineoplásicos/farmacología , Antioxidantes , Disulfuros/farmacología , Ajo/química , Sulfuros/química
3.
Prostaglandins Other Lipid Mediat ; 147: 106379, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31726219

RESUMEN

The most enthralling and versatile class of drugs called the Non-steroidal anti-inflammatory (NSAIDs) showed its therapeutic utility in inflammation, beginning from the era of classic drug 'Aspirin'. NSAIDs and their well-established action based on inhibiting the COX-1 and COX-2 enzyme leads to blockage of prostaglandin pathway. They further categorized into first generation (non-selective inhibitor) and second generation (selective COX-2 inhibitors). Selective COX-2 inhibitors has advantage over non-selective in terms of their improved safety profile of gastro-intestinal tract. Rejuvenating and recent avenues for COXIBS (selective COX-2 inhibitors) explains its integrated role in identification of biochemical pain signaling as well as its pivotal key role in cancer chemotherapy. A key role player in this class is the Celecoxib (only FDA approved COXIB) a member of Biopharmaceutical classification system (BCS) II. Low solubility and bioavailability issues related with celecoxib lead to the development and advancement in the discovery and research of some possible formulation administered either orally, topically or via transdermal route. This review article intent to draw the bead on Celecoxib and it clearly explain extensive knowledge of its disposition profile, its dynamic role in cancer at cellular level and cardiovascular risk assessment. Some of the possible formulations approaches with celecoxib and its improvement aspects are also briefly discussed.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Enfermedades Cardiovasculares/prevención & control , Celecoxib/uso terapéutico , Inflamación/prevención & control , Neoplasias/tratamiento farmacológico , Dolor/prevención & control , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA