RESUMEN
Ulcerative colitis (UC) is a chronic inflammatory disease of the intestines that can significantly impact quality of life and lead to various complications. Currently, 5-aminosalicylic acid derivatives, corticosteroids, immunosuppressants, and biologics are the major treatment strategies for UC, but their limitations have raised concerns. Atractylenolides (ATs), sesquiterpene metabolites found in Atractylodes macrocephala Koidz., have shown promising effects in treating UC by exerting immune barrier modulation, alleviating oxidative stress, gut microbiota regulation, improving mitochondrial dysfunction and repairing the intestinal barrier. Furthermore, ATs have been shown to possess remarkable anti-fibrosis, anti-thrombus, anti-angiogenesis and anti-cancer. These findings suggest that ATs hold important potential in treating UC and its complications. Therefore, this review systematically summarizes the efficacy and potential mechanisms of ATs in treating UC and its complications, providing the latest insights for further research and clinical applications.
RESUMEN
An analytical method was established using high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors (HPLC-DAD-ELSD) with -C18 and -NH2 column tandem for the simultaneous determination of hydrophobic atractylenolide I, II, III, atractylone and hydrophilic compounds glucose, fructose and sucrose in the dried rhizome of Atractylodes macrocephala Koidz (a natural raw material for health foods, Bai-Zhu aka. in Chinese). The method combines the different separation capabilities of reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography. It can provides a new choice for the simultaneous determination of hydrophilic and hydrophobic compounds in traditional Chinese medicines and health foods. It provided a reference method for the quality control of Bai-Zhu. The results showed that the linear correlation coefficients of the established column tandem chromatographic method were all greater than 0.9990, the relative standard deviation was 0.1-2.8%, and the average recovery was 96.7-103.1%. The contents of atractylenolide I, II, III, atractylone, fructose, glucose, and sucrose in 17 batches of Baizhu were 172.3-759.8 µg/g, 201.4-612.8 µg/g, 160.3-534.2 µg/g, 541.4-8723.1 µg/g, 6.9-89.7 mg/g, 0.7-7.9 mg/g, and 1.2-21.0 mg/g, respectively.
RESUMEN
Atractylenolides, comprising atractylenolide I, II, and III, represent the principal bioactive constituents of Atractylodes macrocephala, a traditional Chinese medicine. These compounds exhibit a diverse array of pharmacological properties, including anti-inflammatory, anti-cancer, and organ-protective effects, underscoring their potential for future research and development. Recent investigations have demonstrated that the anti-cancer activity of the three atractylenolides can be attributed to their influence on the JAK2/STAT3 signaling pathway. Additionally, the TLR4/NF-κB, PI3K/Akt, and MAPK signaling pathways primarily mediate the anti-inflammatory effects of these compounds. Atractylenolides can protect multiple organs by modulating oxidative stress, attenuating the inflammatory response, activating anti-apoptotic signaling pathways, and inhibiting cell apoptosis. These protective effects extend to the heart, liver, lung, kidney, stomach, intestine, and nervous system. Consequently, atractylenolides may emerge as clinically relevant multi-organ protective agents in the future. Notably, the pharmacological activities of the three atractylenolides differ. Atractylenolide I and III demonstrate potent anti-inflammatory and organ-protective properties, whereas the effects of atractylenolide II are infrequently reported. This review systematically examines the literature on atractylenolides published in recent years, with a primary emphasis on their pharmacological properties, in order to inform future development and application efforts.
Asunto(s)
Atractylodes , Fosfatidilinositol 3-Quinasas , Medicina Tradicional China , Transducción de Señal , Atractylodes/química , Antiinflamatorios/farmacologíaRESUMEN
Drugs that exhibit a high degree of tumor cell selectivity while minimizing normal cell toxicity are an area of active research interest as a means of designing novel antitumor agents. The pharmacological benefits of Chinese herbal medicine-based treatments have been the focus of growing research interest in recent years. Sesquiterpenoids derived from the Atractylodes macrocephala volatile oil preparations exhibit in vitro and in vivo antitumor activity. Atracylenolides exhibit anti-proliferative, anti-metastatic, and immunomodulatory activity in a range of tumor cell lines in addition to being capable of regulating metabolic activity such that it is a promising candidate drug for the treatment of diverse cancers. The present review provides a summary of recent advances in Atractylenolide-focused antitumor research efforts.
Asunto(s)
Medicamentos Herbarios Chinos , Aceites Volátiles , Sesquiterpenos , Lactonas/farmacología , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Transducción de SeñalRESUMEN
Atractylodes macrocephala Koidz is a widely used as a traditional Chinese medicine. Atractylenolides (-I, -II, and -III) are a class of lactone compounds derived from Atractylodes macrocephala Koidz. Research into atractylenolides over the past two decades has shown that atractylenolides have anti-cancer, anti-inflammatory, anti-platelet, anti-osteoporosis, and antibacterial activity; protect the nervous system; and regulate blood glucose and lipids. Because of structural differences, both atractylenolide-I and atractylenolide-II have remarkable anti-cancer activities, and atractylenolide-I and atractylenolide-III have remarkable anti-inflammatory and neuroprotective activities. We therefore recommend further clinical research on the anti-cancer, anti-inflammatory and neuroprotective effects of atractylenolides, determine their therapeutic effects, alone or in combination. To investigate their ability to regulate blood glucose and lipid, as well as their anti-platelet, anti-osteoporosis, and antibacterial activities, both in vitro and in vivo studies are necessary. Atractylenolides are rapidly absorbed but slowly metabolized; thus, solubilization studies may not be necessary. However, due to the inhibitory effects of atractylenolides on metabolic enzymes, it is necessary to pay attention to the possible side effects of combining atractylenolides with other drugs, in clinical application. In short, atractylenolides have considerable medicinal value and warrant further study.
Asunto(s)
Atractylodes/química , Lactonas/farmacología , Sesquiterpenos/farmacología , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Lactonas/uso terapéutico , Medicina Tradicional China/métodos , Ratones , Neoplasias/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Rizoma/química , Sesquiterpenos/uso terapéuticoRESUMEN
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/uso terapéutico , Atractylodes , Sesquiterpenos/uso terapéutico , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacocinética , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacocinética , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacocinética , Atractylodes/química , Humanos , Fármacos Neuroprotectores/uso terapéutico , Rizoma , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacocinéticaRESUMEN
During a screening program for new agrochemicals from Chinese medicinal herbs and local wild plants, the petroleum ether (PE) extract of Atractylodes lancea (Thunb.) rhizomes was found to possess repellent and contact activities against Tribolium castaneum adults. Bioactivity-directed chromatographic separation of PE extract on repeated silica-gel columns led to the isolation of two polyacetylenes, atractylodin and atractylodinol (1 and 2, resp.), and two lactones, atractylenolides II and III (3 and 4, resp.). The structures of the compounds were elucidated based on NMR spectra. The four isolated compounds were evaluated for their insecticidal and repellent activities against T. castaneum. Atractylodin exhibited strong contact activity against T. castaneum adults with a LD50 value of 1.83â µg/adult. Atractylodin and atractylenolide II also possessed strong repellenct activities against T. castaneum adults. After 4-h exposure, >90% repellency was achieved with atractylodin at a low concentration of 0.63â µg/cm(2) . The results indicated that atractylodin (1) and atractylenolide II (3) have a good potential as a source for natural repellents, and 1 has the potential to be developed as natural insecticide.