Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 440
Filtrar
1.
Adv Sci (Weinh) ; : e2400666, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136283

RESUMEN

Small cell lung cancer (SCLC) is characterized by rapid development of chemoresistance and poor outcomes. Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are widely used in breast cancer and other cancer types. However, the molecular mechanisms of CDK4/6 in SCLC chemoresistance remain poorly understood. Here, Rb1flox/flox, Trp53flox/flox, Ptenflox/flox (RTP) and Rb1flox/flox, Trp53flox/flox, MycLSL/LSL (RPM) spontaneous SCLC mouse models, SCLC cell line-derived xenograft (CDX) models, and SCLC patient-derived xenograft (PDX) models are established to reveal the potential effects of CDK4/6is on SCLC chemoresistance. In this study, it is found that CDK4/6is palbociclib (PD) or ribociclib (LEE) combined with chemotherapeutic drugs significantly inhibit SCLC tumor growth. Mechanistically, CDK4/6is do not function through the classic Retionblastoma1 (RB) dependent axis in SCLC. CDK4/6is induce impair autophagy through the AMBRA1-lysosome signaling pathway. The upregulated AMBRA1 protein expression leads to CDK6 degradation via autophagy,  and the following TFEB and TFE3 nuclear translocation inhibition leading to the lysosome-related genes levels downregulation. Moreover, it is found that the expression of CDK6 is higher in SCLC tumors than in normal tissue and it is associated with the survival and prognosis of SCLC patients. Finally, these findings demonstrate that combining CDK4/6is with chemotherapy treatment may serve as a potential therapeutic option for SCLC patients.

2.
Phytomedicine ; 133: 155872, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39096542

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer, becoming the most mortality of all cancers globally. Blockage of autophagy in NSCLC represents a promising therapeutic strategy that inhibits angiogenesis and overcomes drug resistance. Natural ingredients in anti-tumor adjuvants are increasingly reported to promote cell death with less side effects and the potential to increase chemotherapeutic drugs sensitivity. Baicalin, a Scutellaria baicalensis-extracted flavonoid glycoside, is reported to induce death of NSCLC cells, however, its effects on autophagy in NSCLC cells remain unclear. PURPOSE: This study aimed to investigate the effect of baicalin on autophagic flux in NSCLC cells, unraveling the underlying mechanism including potential target and its role in cell death of NSCLC cells. METHODS: In vitro anti-cancer effects of baicalin were verified by evaluating proliferation, clone formation, cell cycle, and cell migration in three NSCLC cell lines (A549, H1299, and PC-9). In vivo anti-tumor efficacies of baicalin were evaluated in subcutaneous xenograft tumor model in nude mice. Autophagy characterization in NSCLC cells included autophagic marker detection by western blot and immunofluorescence staining, subcellular structure observation by TEM, lysosomal function by RNA-seq and fluorescence staining (LysoTracker®, LysoSensor®, and acridine orange). Based on RNA-seq and molecular biological verification using apoptotic, autophagic, and lysosomal inhibitors, potential target molecule of baicalin was verified via Ca2+ flux assay, MCOLN3 knockdown by shRNA, and virtual molecular docking. RESULTS: Baicalin inhibited NSCLC cell proliferation and migration, and suppressed tumor growth in vivo. Baicalin blocked the autophagic flux via activating the membranal cation channel MCOLN3 of lysosome, which disrupted its Ca2+ balance and induced lysosome dysfunction, leading to failure of autolysosome degradation. The cytoplasmic Ca2+ imbalance further resulted in depolarization of mitochondrial membrane potentials and ROS accumulation in NSCLC cells, mediating autophagy-related apoptosis. CONCLUSION: This study demonstrated that baicalin inhibited autolysosome degradation by activating MCOLN3, leading to dysfunction in lysosomal pH elevation, thereby inhibiting autophagy in NSCLC, leading to apoptotic death of NSCLC cells. These findings enriched the existing theories of cancer therapy based on autophagy inhibition and underlying mechanisms of flavonoids as antitumor agents, paving the way for their clinical application in future.

3.
Biomed Pharmacother ; 177: 117038, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002441

RESUMEN

INTRODUCTION: Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES: This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS: In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3ß and Flag-tagged GSK3ß, α2-ADR antagonist, GSK3ß inhibitor, AKT inhibitor were used to identify the role of GSK3ß in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS: Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3ß activity by SB216763 and si-GSK3ß enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION: Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3ß activity in an α2-ADR-dependent manner.


Asunto(s)
Autofagia , Dexmedetomidina , Glucógeno Sintasa Quinasa 3 beta , Hepatectomía , Hepatocitos , Regeneración Hepática , Ratones Endogámicos C57BL , Animales , Dexmedetomidina/farmacología , Regeneración Hepática/efectos de los fármacos , Autofagia/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Masculino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Hígado/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Cell Signal ; 121: 111301, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019338

RESUMEN

Ischemic stroke is one of the most disabling and fatal diseases around the world. The damaged brain tissues will undergo excessive autophagy, vascular endothelial cells injury, blood-brain barrier (BBB) impairment and neuroinflammation after ischemic stroke. However, there is no unified viewpoint on the underlying mechanism of brain damage. Transforming growth factor-ß1 (TGF-ß1), as a multi-functional cytokine, plays a crucial role in the intricate pathological processes and helps maintain the physiological homeostasis of brain tissues through various signaling pathways after ischemic stroke. In this review, we summarize the protective role of TGF-ß1 in autophagic flux, BBB, vascular remodeling, neuroinflammation and other aspects after ischemic stroke. Based on the review, we believe that TGF-ß1 could serve as a key target for treating ischemic stroke.


Asunto(s)
Autofagia , Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Animales , Barrera Hematoencefálica/metabolismo , Transducción de Señal , Células Endoteliales/metabolismo , Isquemia Encefálica/metabolismo
5.
Methods Mol Biol ; 2814: 97-106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954200

RESUMEN

Autophagy is an intracellular clearance and recycling pathway that delivers different types of cargos to lysosomes for degradation. In recent years, autophagy has attracted considerable medical interest, and many different techniques are being developed to study this process in experimental models such as Dictyostelium. Here we describe the use of different autophagic markers in confocal microscopy, in vivo and also in fixed cells. In particular, we describe the use of the GFP-Atg8-RFP-Atg8ΔG marker and the optimization of the GFP-PgkA cleavage assay to detect small differences in autophagy flux.


Asunto(s)
Autofagia , Dictyostelium , Microscopía Confocal , Dictyostelium/metabolismo , Dictyostelium/fisiología , Autofagia/fisiología , Microscopía Confocal/métodos , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Lisosomas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética
6.
Heliyon ; 10(12): e33371, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39021954

RESUMEN

Queen bee acid (QBA), which is exclusively found in royal jelly, has anti-inflammatory, antihypercholesterolemic, and antiangiogenic effects. A recent study demonstrated that QBA enhances autophagic flux in the heart. Considering the significant role of autophagy in the development of myocardial ischemia/reperfusion (I/R) injury, we investigated the effect of pretreatment with QBA on myocardial damage. In an in vivo model, left coronary artery blockage for 30 min and reperfusion for 2 h were used to induce myocardial I/R. In an in vitro model, neonatal rat cardiomyocytes (NRCs) were exposed to 3 h of hypoxia and 3 h of reoxygenation (H/R). Our results showed that pretreatment with QBA increased the cell viability of cardiomyocytes exposed to H/R in a dose-dependent manner, and the best protective concentration of QBA was 100 µM. Next, we noted that QBA pretreatment (24h before H/R) enhanced autophagic flux and attenuated mitochondrial damage, cardiac oxidative stress and apoptosis in NRCs exposed to H/R injury, and these effects were weakened by cotreatment with the autophagy inhibitor bafilomycin A1 (Baf). In addition, similar results were observed when QBA (10 mg/kg) was injected intraperitoneally into I/R mice 30 min before ischemia. Compared to mice subjected to I/R alone, those treated with QBA had decreased myocardial infarct area and increased cardiac function, whereas, these effects were partly reversed by Baf. Notably, in NRCs exposed to H/R, tandem fluorescent mRFP-GFP-LC3 assays indicated increased autophagosome degradation due to the increase in autophagic flux upon QBA treatment, but coinjection of Baf blocked autophagic flux. In this investigation, no notable adverse effects of QBA were detected in either cellular or animal models. Our findings suggest that QBA pretreatment mitigates myocardial I/R injury by eliminating dysfunctional mitochondria and reducing reactive oxygen species via promoting autophagic flux.

7.
Biomed Pharmacother ; 176: 116819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834003

RESUMEN

BACKGROUND AND PURPOSE: Our previous research discovered that cinnamamide derivatives are a new type of potential cardioprotective agents myocardial ischemia-reperfusion (MIR) injury, among which Compound 10 exhibits wonderful beneficial action in vitro. However, the exact mechanism of Compound 10 still needs to be elucidated. EXPERIMENTAL APPROACH: The protective effect of Compound 10 was determined by detecting the cell viability and LDH leakage rate in H9c2 cells subjected to H2O2. Alterations of electrocardiogram, echocardiography, cardiac infarct area, histopathology and serum myocardial zymogram were tested in MIR rats. Additionally, the potential mechanism of Compound 10 was explored through PCR. Network pharmacology and Western blotting was conducted to monitor levels of proteins related to autophagic flux and mTOR, autophagy regulatory substrate, induced by Compound 10 both in vitro and in vivo, as well as expressions of Sirtuins family members. KEY RESULTS: Compound 10 significantly ameliorated myocardial injury, as demonstrated by increased cell viability, decreased LDH leakage in vitro, and declined serum myocardial zymogram, ST elevation, cardiac infarct area and improved cardiac function and microstructure of heart tissue in vivo. Importantly, Compound 10 markedly enhanced the obstruction of autophagic flux and inhibited excessive autophagy initiation against MIR by decreased ATG5, Rab7 and increased P-mTOR and LAMP2. Furthermore, Sirt1 knockdown hindered Compound 10's regulation on mTOR, leading to interrupted cardiac autophagic flux. CONCLUSIONS AND IMPLICATIONS: Compound 10 exerted cardioprotective effects on MIR by reducing excessive autophagy and improving autophgic flux blockage. Our work would take a novel insight in seeking effective prevention and treatment strategies against MIR injury.


Asunto(s)
Autofagia , Cardiotónicos , Daño por Reperfusión Miocárdica , Sirtuina 1 , Animales , Masculino , Ratas , Autofagia/efectos de los fármacos , Cardiotónicos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cinamatos/farmacología , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Ratas Sprague-Dawley , Sirtuina 1/metabolismo
8.
Antioxidants (Basel) ; 13(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790630

RESUMEN

Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.

9.
J Asian Nat Prod Res ; 26(8): 900-909, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38753580

RESUMEN

Nine jatrophane diterpenoids were isolated from the whole plant Euphorbia helioscopia, including two new ones, helioscopnins A (1) and B (2). Comprehensive spectroscopic data analysis and ECD calculations elucidated their structures, including absolute configurations. All compounds were evaluated for bioactivity towards autophagic flux by flow cytometry using HM mCherry-GFP-LC3 cells. Compounds 1, 3, 4, 5, 8, and 9 significantly increased autophagic flux.


Asunto(s)
Autofagia , Diterpenos , Euphorbia , Euphorbia/química , Diterpenos/farmacología , Diterpenos/química , Diterpenos/aislamiento & purificación , Autofagia/efectos de los fármacos , Estructura Molecular , Humanos
10.
Chin J Nat Med ; 22(5): 387-401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38796213

RESUMEN

Hernandezine (Her), a bisbenzylisoquinoline alkaloid extracted from Thalictrum flavum, is recognized for its range of biological activities inherent to this herbal medicine. Despite its notable properties, the anti-cancer effects of Her have remained largely unexplored. In this study, we elucidated that Her significantly induced cytotoxicity in cancer cells through the activation of apoptosis and necroptosis mechanisms. Furthermore, Her triggered autophagosome formation by activating the AMPK and ATG5 conjugation systems, leading to LC3 lipidation. Our findings revealed that Her caused damage to the mitochondrial membrane, with the damaged mitochondria undergoing mitophagy, as evidenced by the elevated expression of mitophagy markers. Conversely, Her disrupted autophagic flux, demonstrated by the upregulation of p62 and accumulation of autolysosomes, as observed in the RFP-GFP-LC3 reporter assay. Initially, we determined that Her did not prevent the fusion of autophagosomes and lysosomes. However, it inhibited the maturation of cathepsin D and increased lysosomal pH, indicating an impairment of lysosomal function. The use of the early-stage autophagy inhibitor, 3-methyladenine (3-MA), did not suppress LC3II, suggesting that Her also induces noncanonical autophagy in autophagosome formation. The application of Bafilomycin A1, an inhibitor of noncanonical autophagy, diminished the recruitment of ATG16L1 and the accumulation of LC3II by Her, thereby augmenting Her-induced cell death. These observations imply that while autophagy initially plays a protective role, the disruption of the autophagic process by Her promotes programmed cell death. This study provides the first evidence of Her's dual role in inducing apoptosis and necroptosis while also initiating and subsequently impairing autophagy to promote apoptotic cell death. These insights contribute to a deeper understanding of the mechanisms underlying programmed cell death, offering potential avenues for enhancing cancer prevention and therapeutic strategies.


Asunto(s)
Apoptosis , Autofagia , Catepsina D , Lisosomas , Catepsina D/metabolismo , Catepsina D/genética , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Bencilisoquinolinas/farmacología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Concentración de Iones de Hidrógeno , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo
11.
Biochem Biophys Rep ; 38: 101705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38596406

RESUMEN

(Macro)autophagy is a cellular degradation system for unnecessary materials, such as aggregate-prone TDP-43, a central molecule in neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Abemaciclib (Abe) and vacuolin-1 (Vac) treatments are known to induce vacuoles characterized by an autophagosome and a lysosome component, suggesting that they facilitate autophagosome-lysosome fusion. However, it remains unknown whether Abe and Vac suppress the accumulation of aggregate-prone TDP-43 by accelerating autophagic flux. In the present study, the Abe and Vac treatment dose-dependently reduced the GFP/RFP ratio in SH-SY5Y neuroblastoma cells stably expressing the autophagic flux marker GFP-LC3-RFP-LC3ΔG. Abe and Vac also increased the omegasome marker GFP-ATG13 signal and the autophagosome marker mCherry-LC3 localized to the lysosome marker LAMP1-GFP. The Abe and Vac treatment decreased the intracellular level of the lysosome marker LAMP1-GFP in SH-SY5Y cells stably expressing LAMP1-GFP, but did not increase the levels of LAMP1-GFP, the autophagosome marker LC3-II, or the multivesicular body marker TSG101 in the extracellular vesicle-enriched fraction. Moreover, Abe and Vac treatment autophagy-dependently inhibited GFP-tagged aggregate-prone TDP-43 accumulation. The results of a PI(3)P reporter assay using the fluorescent protein tagged-2 × FYVE and LAMP1-GFP indicated that Abe and Vac increased the intensity of the PI(3)P signal on lysosomes. A treatment with the VPS34 inhibitor wortmannin (WM) suppressed Abe-/Vac-facilitated autophagic flux and the degradation of GFP-tagged aggregate-prone TDP-43. Collectively, these results suggest that Abe and Vac degrade aggregate-prone TDP-43 by accelerating autophagosome formation and autophagosome-lysosome fusion through the formation of PI(3)P.

12.
Cell Mol Life Sci ; 81(1): 184, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630152

RESUMEN

Autophagy, a catabolic process integral to cellular homeostasis, is constitutively active under physiological and stress conditions. The role of autophagy as a cellular defense response becomes particularly evident upon exposure to nanomaterials (NMs), especially environmental nanoparticles (NPs) and nanoplastics (nPs). This has positioned autophagy modulation at the forefront of nanotechnology-based therapeutic interventions. While NMs can exploit autophagy to enhance therapeutic outcomes, they can also trigger it as a pro-survival response against NP-induced toxicity. Conversely, a heightened autophagy response may also lead to regulated cell death (RCD), in particular autophagic cell death, upon NP exposure. Thus, the relationship between NMs and autophagy exhibits a dual nature with therapeutic and environmental interventions. Recognizing and decoding these intricate patterns are essential for pioneering next-generation autophagy-regulating NMs. This review delves into the present-day therapeutic potential of autophagy-modulating NMs, shedding light on their status in clinical trials, intervention of autophagy in the therapeutic applications of NMs, discusses the potency of autophagy for application as early indicator of NM toxicity.


Asunto(s)
Nanopartículas , Nanoestructuras , Autofagia
13.
Brain Res ; 1836: 148909, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570154

RESUMEN

BACKGROUND: Early brain injury (EBI) is closely associated with poor prognosis in patients with subarachnoid haemorrhage (SAH), with autophagy playing a pivotal role in EBI. However, research has shown that the stimulator of interferon genes (STING) pathway impacts autophagic flux. While the regulatory impact of neuritin on EBI and autophagic flux has been established previously, the underlying mechanism remains unclear. This study aimed to determine the role of the cGAS-STING pathway in neuritin-mediated regulation of autophagic flux following SAH. METHODS: A SAH model was established in male Sprague-Dawley rats via intravascular perforation. Neuritin overexpressions using adeno-associated virus, the STING antagonist "C-176," and the activator, "CMA," were determined to investigate the cGAS-STING pathway's influence on autophagic flux and brain injury post-SAH, along with the neuritin's regulatory effect on STING. In this study, SAH grade, neurological score, haematoxylin and eosin (H&E) staining, brain water content (BWC), sandwich enzyme-linked immunosorbent assay, Evans blue staining, immunofluorescence staining, western blot analysis, and transmission electron microscopy (TEM) were examined. RESULTS: Neuritin overexpression significantly ameliorated neurobehavioural scores, blood-brain barrier injury, brain oedema, and impaired autophagic flux in SAH-induced rats. STING expression remarkably increased post-SAH. C-176 and CMA mitigated and aggravated autophagic flux injury and brain injury, respectively, while inhibiting and enhancing STING, respectively. Particularly, CMA treatment nullified the protective effects of neuritin against autophagic flux and mitigated brain injury. CONCLUSION: Neuritin alleviated EBI by restoring impaired autophagic flux after SAH through the regulation of the cGAS-STING pathway.


Asunto(s)
Autofagia , Lesiones Encefálicas , Proteínas de la Membrana , Ratas Sprague-Dawley , Transducción de Señal , Hemorragia Subaracnoidea , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Masculino , Hemorragia Subaracnoidea/metabolismo , Hemorragia Subaracnoidea/complicaciones , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Lesiones Encefálicas/metabolismo , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Proteínas Ligadas a GPI/metabolismo , Modelos Animales de Enfermedad
14.
Methods Mol Biol ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38446407

RESUMEN

Autophagy is an evolutionarily conserved process providing the energy that cells need to survive, especially in stress situations, through catabolic processes. Considering the dual role of autophagy in cancer cells depending on the cellular context, it is crucial to comprehend the effect of drug candidates put forward to prevent cancer through the autophagy pathway. The CYTO-ID® Autophagy Detection Kit allows a rapid, specific and quantitative measurement of autophagic activity at the cellular level using a 488 nm-excitable green fluorescent detection reagent via flow cytometer. In this chapter, we present the CYTO-ID® Autophagy Detection method with a stepwise protocol to monitor the autophagy flux after the application of any compound to suspension cancer cell lines with flow cytometric analysis.

15.
Environ Pollut ; 347: 123740, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38462198

RESUMEN

Tris (1,3-dichloro-2-propyl) phosphate (TDCPP), a halogen-containing phosphorus flame retardant, is widely used and has been shown to possess health risks to humans. The sustained release of artificial nanomaterials into the environment increases the toxicological risks of their coexisting pollutants. Nanomaterials may seriously change the environmental behavior and fate of pollutants. In this study, we investigated this combined toxicity and the potential mechanisms of toxicity of TDCPP and titanium dioxide nanoparticles (TiO2 NPs) aggregates on human neuroblastoma SH-SY5Y cells. TDCPP and TiO2 NPs aggregates were exposed in various concentration combinations, revealing that TDCPP (25 µg/mL) reduced cell viability, while synergistic exposure to TiO2 NPs aggregates exacerbated cytotoxicity. This combined exposure also disrupted mitochondrial function, leading to dysregulation in the expression of mitochondrial fission proteins (DRP1 and FIS1) and fusion proteins (OPA1 and MFN1). Consequently, excessive mitochondrial fission occurred, facilitating the translocation of cytochrome C from mitochondria to activate apoptotic signaling pathways. Furthermore, exposure of the combination of TDCPP and TiO2 NPs aggregates activated upstream mitochondrial autophagy but disrupted downstream Parkin recruitment to damaged mitochondria, preventing autophagosome-lysosome fusion and thereby disrupting mitochondrial autophagy. Altogether, our findings suggest that TDCPP and TiO2 NPs aggregates may stimulate apoptosis in neuronal SH-SY5Y cells by inducing mitochondrial hyperfission and inhibiting mitochondrial autophagy.


Asunto(s)
Contaminantes Ambientales , Neuroblastoma , Humanos , Mitofagia , Neuroblastoma/metabolismo , Dinámicas Mitocondriales , Apoptosis
16.
Bio Protoc ; 14(5): e4949, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38464942

RESUMEN

Autophagy is a conserved homeostatic mechanism involved in cellular homeostasis and many disease processes. Although it was first described in yeast cells undergoing starvation, we have learned over the years that autophagy gets activated in many stress conditions and during development and aging in mammalian cells. Understanding the fundamental mechanisms underlying autophagy effects can bring us closer to better insights into the pathogenesis of many disease conditions (e.g., cardiac muscle necrosis, Alzheimer's disease, and chronic lung injury). Due to the complex and dynamic nature of the autophagic processes, many different techniques (e.g., western blotting, fluorescent labeling, and genetic modifications of key autophagy proteins) have been developed to delineate autophagy effects. Although these methods are valid, they are not well suited for the assessment of time-dependent autophagy kinetics. Here, we describe a novel approach: the use of DAPRed for autophagic flux measurement via live cell imaging, utilizing A549 cells, that can visualize and quantify autophagic flux in real time in single live cells. This approach is relatively straightforward in comparison to other experimental procedures and should be applicable to any in vitro cell/tissue models. Key features • Allows real-time qualitative imaging of autophagic flux at single-cell level. • Primary cells and cell lines can also be utilized with this technique. • Use of confocal microscopy allows visualization of autophagy without disturbing cellular functions.

17.
Virology ; 594: 110059, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38518442

RESUMEN

Ovine pulmonary adenocarcinoma (OPA), caused by the jaagsiekte sheep retrovirus (JSRV), is a chronic, progressive, and contagious lung tumor that seriously affects sheep production. It also represents a valuable animal model for several human lung adenocarcinomas. However, little is known about the role of autophagy in OPA tumorigenesis. Here, Western blotting combined with transmission electron microscopy examination and Cyto-ID dye staining was employed for evaluation of changes of autophagic levels. The results of the present study showed that expression of the autophagy marker proteins Beclin-1 and LC3 was decreased in OPA lung tissues, as well as in cells overexpressing the envelope glycoprotein of JSRV (JSRV Env). Reduced numbers of autophagosomes were also observed in cells overexpressing JSRV Env, although assessment of autophagic flux showed that JSRV Env overexpression did not block the formation of autophagosomes, suggesting increased degradation of autolysosomes. Last, mouse xenograft experiments indicated that inhibition of autophagy by 3-methyladenine suppressed both tumor growth and the epithelial-to-mesenchymal transition. In conclusion, JSRV, through JSRV Env, takes advantage of the autophagy process, leading to the development of OPA.


Asunto(s)
Retrovirus Ovino Jaagsiekte , Ovinos , Animales , Humanos , Ratones , Retrovirus Ovino Jaagsiekte/genética , Retrovirus Ovino Jaagsiekte/metabolismo , Productos del Gen env , Transformación Celular Neoplásica , Autofagia , Glicoproteínas/metabolismo
18.
Biol Cell ; 116(5): e2300067, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537110

RESUMEN

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Asunto(s)
Autofagia , Dictyostelium , Proteínas Protozoarias , Dictyostelium/genética , Dictyostelium/metabolismo , Dictyostelium/citología , Dictyostelium/crecimiento & desarrollo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Eliminación de Gen , Canales de Calcio/metabolismo , Canales de Calcio/genética , Calcio/metabolismo , Diferenciación Celular
19.
Curr Mol Pharmacol ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38485683

RESUMEN

BACKGROUND: While chemotherapy treatment demonstrates its initial effectiveness in eliminating the majority of the tumor cell population, nevertheless, most patients relapse and eventually succumb to the disease upon its recurrence. One promising approach is to explore novel, effective chemotherapeutic adjuvants to enhance the sensitivity of cancer cells to conventional chemotherapeutic agents. In the present study, we explored the effect of quercetin on the sensitivity of colorectal cancer (CRC) cells to conventional chemotherapeutic agent 5-fluorouracil (5-FU) and the molecular mechanisms. METHODS: MTT assay, colony formation assay and Hoechst staining were performed to investigate the growth inhibition effect of quercetin alone or combined with 5-FU. The expression levels of apoptosis- and autophagy-related proteins were assessed by western blotting. Intracellular ROS was detected using DCFH-DA. The change in the mitochondrial membrane potential was measured by a JC-1 probe. The effect of quercetin on mitochondrial morphology was examined using a mitochondrial-specific fluorescence probe, Mito-Tracker red. RESULTS: The results demonstrated quercetin-induced apoptosis and autophagy, as well as imbalanced ROS, decreased mitochondrial membrane potential, and Drp-1-mediated mitochondrial fission in CRC cells. Autophagy blockage with autophagy inhibitor chloroquine (CQ) enhanced quercetininduced cytotoxicity, indicating that quercetin-induced cytoprotective autophagy. Meanwhile, quercetin enhanced the sensitivity of CRC cells to 5- FU via the induction of mitochondrial fragmentation, which could be further enhanced when the quercetin-induced protective autophagy was blocked by CQ. CONCLUSION: Our findings suggested that quercetin could induce protective autophagy and Drp-1-mediated mitochondrial fragmentation and enhance the sensitivity of CRC cells to conventional agent 5-FU, which not only suggests that quercetin may act as a chemotherapeutic adjuvant but also implies that the regulation of autophagic flux may be a potential therapeutic strategy for colorectal cancer.

20.
Heliyon ; 10(5): e27571, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495179

RESUMEN

The role of fat mass and obesity-associated protein (FTO), an N6-methyladenosine (m6A) demethylase, in non-small cell lung cancer (NSCLC) has recently received widespread attention. However the underlying mechanisms of FTO-mediated autophagy regulation in NSCLC progression remain elusive. In this study, we found that FTO was significantly upregulated in NSCLC, and downregulation of FTO suppressed the growth, invasion and migration of NSCLC cells by inducing autophagy. FTO knockdown resulted in elevated m6A levels in NSCLC cells. Methylated RNA immunoprecipitation sequencing showed that sestrin 2 (SESN2) was involved in m6A regulation during autophagy in NSCLC cells. Interestingly, m6A modifications in exon 9 of SESN2 regulated its stability. FTO deficiency promoted the binding of insulin-like growth factor 2 mRNA-binding protein 1 to SESN2 mRNA, enhancing its stability and elevating its protein expression. FTO inhibited autophagic flux by downregulating SESN2, thereby promoting the growth, invasion and migration of NSCLC cells. Besides, the mechanism by which FTO blocked SESN2-mediated autophagy activation was associated with the AMPK-mTOR signaling pathway. Taken together, these findings uncover an essential role of the FTO-autophagy-SESN2 axis in NSCLC progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA