Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 605
Filtrar
1.
Anal Sci ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235677

RESUMEN

Macrophages are a type of white blood cells that play key roles in innate immune responses as a part of cellular immunity for host defence and tissue homeostasis. To perform diverse functions, macrophages show high plasticity by transforming to polarized states. They are mainly identified as unpolarized, pro-inflammatory and antiinflammatory states and termed as M0, M1 and M2 macrophages respectively. Discriminating polarized states is important due to strict implication with inflammatory conditions resulting in many diseases as chronic inflammation, neurodegeneration, and cancer etc. Many polarization protein markers have been identified and applied to investigate expression profiles through PCR and other techniques with antibodies. However, they are time and cost consuming and sometimes show insufficient performances. We focused on the mannose receptor (CD206) as representative marker of M2 macrophage recognising terminal mannose. We developed dose dependent mannosylated fluorescent proteins (FPs) by conjugations with mannose derivative for around 20 modifiable sites on FPs surfaces. Maximum modifications did not spoil various features of FPs. We found further sensitive and specific discriminations among M2, M1 and M0 macrophages after treating polarized macrophages with adequately conditioned FPs compared to already established approaches using anti CD206 antibody through flow cytometric analysis. These results might be derived from direct ligand utilizations and increased avidity due to multivalent bindings with abundantly modified multimeric FPs. Our strategy is simple but addresses disadvantages of preceding methods. Moreover, this strategy is applicable to detect other cell surface receptors as FPs can be modified with ligands or recognizable aptamer like molecules.

2.
Biochem Pharmacol ; 227: 116457, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098732

RESUMEN

The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or ß-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.


Asunto(s)
Receptores CXCR4 , Anticuerpos de Dominio Único , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Receptores CXCR4/inmunología , Humanos , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Animales , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/inmunología , Células HEK293 , Afinidad de Anticuerpos
3.
Sci Rep ; 14(1): 20003, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198569

RESUMEN

Humoral response to SARS-CoV-2 has been studied, predominantly the classical IgG and its subclasses. Although IgE antibodies are typically specific to allergens or parasites, a few reports describe their production in response to SARS-CoV-2 and other viruses. Here, we investigated IgE specific to receptor binding domain (RBD) of SARS-CoV-2 in a Brazilian cohort following natural infection and vaccination. Samples from 59 volunteers were assessed after infection (COVID-19), primary immunization with vectored (ChAdOx1) or inactivated (CoronaVac) vaccines, and booster immunization with mRNA (BNT162b2) vaccine. Natural COVID-19 induced IgE, but vaccination increased its levels. Subjects vaccinated with two doses of ChAdOx1 exhibited a more robust response than those immunized with two doses of CoronaVac; however, after boosting with BNT162b2, all groups presented similar IgE levels. IgE showed intermediate-to-high avidity, especially after the booster vaccine. We also found IgG4 antibodies, mainly after the booster, and they moderately correlated with IgE. ELISA results were confirmed by control assays, using IgG depletion by protein G and lack of reactivity with heterologous antigen. In our cohort, no clinical data could be associated with the IgE response. We advocate for further research on IgE and its role in viral immunity, extending beyond allergies and parasitic infections.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunoglobulina E , Inmunoglobulina G , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Inmunoglobulina E/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Anticuerpos Antivirales/inmunología , Masculino , Femenino , Adulto , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Persona de Mediana Edad , Brasil , Vacuna BNT162/inmunología , Vacunación , Inmunización Secundaria , Adulto Joven
4.
J Proteome Res ; 23(9): 3933-3943, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39140748

RESUMEN

Immunoglobulin G (IgG) purification is a critical process for evaluating its role in autoimmune diseases, which are defined by the occurrence of autoantibodies. Affinity chromatography with protein G is widely considered to be the optimal technique for laboratory-scale purification. However, this technique has some limitations, including the exposure of IgG to low pH, which can compromise the quality of the purified IgG. Here, we show that alternative methods for IgG purification are possible while maintaining the quality of IgG. Different techniques for IgG purification from serum were evaluated and compared with protein G-based approaches: Melon Gel, caprylic acid-ammonium sulfate (CAAS) precipitation, anion-exchange chromatography with diethylamino ethyl (DEAE) following ammonium sulfate (AS) precipitation, and AS precipitation alone. The results demonstrated that the purification yield of these techniques surpassed that of protein G. However, differences in the purity of IgG were observed using GeLC-MS/MS. The avidity of purified IgG against selected targets (SARS-CoV-2 and topoisomerase-I) was similar between purified IgG obtained using all techniques and unpurified sera. Our work provides valuable insights for future studies of IgG function by recommending alternative purification methods that offer advantages in terms of yield, time efficiency, cost-effectiveness, and milder pH conditions than protein G.


Asunto(s)
Sulfato de Amonio , Cromatografía de Afinidad , Inmunoglobulina G , Humanos , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/sangre , Inmunoglobulina G/química , Cromatografía de Afinidad/métodos , Sulfato de Amonio/química , Cromatografía por Intercambio Iónico/métodos , Espectrometría de Masas en Tándem/métodos , SARS-CoV-2/inmunología , Caprilatos/química , Precipitación Química , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Afinidad de Anticuerpos
5.
Allergy ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189064

RESUMEN

Type I hypersensitivity, also known as classical allergy, is mediated via allergen-specific IgE antibodies bound to type I FcR (FcεRI) on the surface of mast cells and basophils upon cross-linking by allergens. This IgE-mediated cellular activation may be blocked by allergen-specific IgG through multiple mechanisms, including direct neutralization of the allergen or engagement of the inhibitory receptor FcγRIIb which blocks IgE signal transduction. In addition, co-engagement of FcεRI and FcγRIIb by IgE-IgG-allergen immune complexes causes down regulation of receptor-bound IgE, resulting in desensitization of the cells. Both, activation of FcεRI by allergen-specific IgE and engagement of FcγRIIb by allergen-specific IgG are driven by allergen-binding. Here we delineate the distinct roles of antibody affinity versus avidity in driving these processes and discuss the role of IgG subclasses in inhibiting basophil and mast cell activation.

6.
Vaccine ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019657

RESUMEN

BACKGROUND: To overcome supply issues of COVID-19 vaccines, this partially single blind, multi-centric, vaccine trial aimed to evaluate humoral immunogenicity using lower vaccine doses, intradermal vaccination, and heterologous vaccine schedules. Also, the immunity after a booster vaccination was assessed. METHODOLOGY: 566 COVID-19-naïve healthy adults were randomized to 1 of 8 treatment arms consisting of combinations of BNT162b2, mRNA-1273, and ChAdOx1-S. Anti-Receptor-Binding Domain immunoglobulin G (RBD IgG) titers, neutralizing antibody titres, and avidity of the anti-RBD IgGs was assessed up to 1 year after study start. RESULTS: Prolonging the interval between vaccinations from 28 to 84 days and the use of a heterologous BNT162b2 + mRNA-1273 vaccination schedule led to a non-inferior immune response, compared to the reference schedule. A low dose of mRNA-1273 was sufficient to induce non-inferior immunity. Non-inferiority could not be demonstrated for intradermal vaccination. For all adapted vaccination schedules, anti-RBD IgG titres measured after a first booster vaccination were non-inferior to their reference schedule. CONCLUSION: This study suggests that reference vaccine schedules can be adapted without jeopardizing the development of an adequate immune response. Immunity after a booster vaccination did not depend on the dose or brand of the booster vaccine, which is relevant for future booster campaigns. The trial is registered in the European Union Clinical Trials Register (number 2021-001993-52) and on clinicaltrials.gov (NCT06189040).

7.
Crit Rev Clin Lab Sci ; : 1-15, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041650

RESUMEN

Immunoglobulin G (IgG) and immunoglobulin M (IgM) testing are commonly used to determine infection status. Typically, the detection of IgM indicates an acute or recent infection, while the presence of IgG alone suggests a chronic or past infection. However, relying solely on IgG and IgM antibody positivity may not be sufficient to differentiate acute from chronic infections. This limitation arises from several factors. The prolonged presence of IgM can complicate diagnostic interpretations, and false positive IgM results often arise from antibody cross-reactivity with various antigens. Additionally, IgM may remain undetectable in prematurely collected samples or in individuals who are immunocompromised, further complicating accurate diagnosis. As a result, additional diagnostic tools are required to confirm infection status. Avidity is a measure of the strength of the binding between an antigen and antibody. Avidity-based assays have been developed for various infectious agents, including toxoplasma, cytomegalovirus (CMV), SARS-CoV-2, and avian influenza, and are promising tools in clinical diagnostics. By measuring the strength of antibody binding, they offer critical insights into the maturity of the immune response. These assays are instrumental in distinguishing between acute and chronic or past infections, monitoring disease progression, and guiding treatment decisions. The development of automated platforms has optimized the testing process by enhancing efficiency and minimizing the risk of manual errors. Additionally, the recent advent of real-time biosensor immunoassays, including the label-free immunoassays (LFIA), has further amplified the capabilities of these assays. These advances have expanded the clinical applications of avidity-based assays, making them useful tools for the diagnosis and management of various infectious diseases. This review is structured around several key aspects of IgG avidity in clinical diagnosis, including: (i) a detailed exposition of the IgG affinity maturation process; (ii) a thorough discussion of the IgG avidity assays, including the recently emerged biosensor-based approaches; and (iii) an examination of the applications of IgG avidity in clinical diagnosis. This review is intended to contribute toward the development of enhanced diagnostic tools through critical assessment of the present landscape of avidity-based testing, which allows us to identify the existing knowledge gaps and highlight areas for future investigation.

8.
Bio Protoc ; 14(12): e5021, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948258

RESUMEN

Chimeric antigen receptors (CARs) are synthetic fusion proteins that can reprogram immune cells to target specific antigens. CAR-expressing T cells have emerged as an effective treatment method for hematological cancers; despite this success, the mechanisms and structural properties that govern CAR responses are not fully understood. Here, we provide a simple assay to assess cellular avidity using a standard flow cytometer. This assay measures the interaction kinetics of CAR-expressing T cells and targets antigen-expressing target cells. By co-culturing stably transfected CAR Jurkat cells with target positive and negative cells for short periods of time in a varying effector-target gradient, we were able to observe the formation of CAR-target cell doublets, providing a readout of actively bound cells. When using the optimized protocol reported here, we observed unique cellular binding curves that varied between CAR constructs with differing antigen binding domains. The cellular binding kinetics of unique CARs remained consistent, were dependent on specific target antigen expression, and required active biological signaling. While existing literature is not clear at this time whether higher or lower CAR cell binding is beneficial to CAR therapeutic activity, the application of this simplified protocol for assessing CAR binding could lead to a better understanding of the proximal signaling events that regulate CAR functionality. Key features • Determines CAR receptor cellular interaction kinetics using a Jurkat cell model. • Can be used for a wide variety of CAR target antigens, including both hematological and solid tumor targets. • Experiments can be performed in under two hours with no staining using a standard flow cytometer. • Requires stable CAR Jurkat cells and target cells with stable fluorescent marker expression for optimal results.

9.
J Proteome Res ; 23(8): 3322-3331, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38937710

RESUMEN

Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.


Asunto(s)
Proteínas de la Membrana , Unión Proteica , Humanos , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Comunicación Celular , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/química , Mapeo de Interacción de Proteínas/métodos , Animales , Ligandos
10.
Antib Ther ; 7(2): 164-176, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38933534

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, escape coronavirus disease 2019 therapeutics and vaccines, and jeopardize public health. To combat SARS-CoV-2 antigenic escape, we developed a rapid, high-throughput pipeline to discover monospecific VHH antibodies and iteratively develop VHH-Fc-VHH bispecifics capable of neutralizing emerging SARS-CoV-2 variants. By panning VHH single-domain phage libraries against ancestral or beta spike proteins, we discovered high-affinity VHH antibodies with unique target epitopes. Combining two VHHs into a tetravalent bispecific construct conferred broad neutralization activity against multiple variants and was more resistant to antigenic escape than the monospecific antibody alone. Following the rise of the Omicron variant, a VHH in the original bispecific construct was replaced with another VHH discovered against the Omicron BA.1 receptor binding domain; the resulting bispecific exhibited neutralization against both BA.1 and BA.5 sublineage variants. A heavy chain-only tetravalent VHH-Fc-VHH bispecific platform derived from humanized synthetic libraries held a myriad of unique advantages: (i) synthetic preconstructed libraries minimized risk of liabilities and maximized discovery speed, (ii) VHH scaffolds allowed for a modular "plug-and-play" format that could be rapidly iterated upon as variants of concern arose, (iii) natural dimerization of single VHH-Fc-VHH polypeptides allowed for straightforward bispecific production and purification methods, and (iv) multivalent approaches enhanced avidity boosting effects and neutralization potency, and conferred more robust resistance to antigenic escape than monovalent approaches against specific variants. This iterative platform of rapid VHH discovery combined with modular bispecific design holds promise for long-term viral control efforts.

11.
Vaccine ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38876835

RESUMEN

This study aims to analyze if the results from different serological assays, used alone or combined, could match the outcome of challenge infection with foot-and-mouth disease virus (FMDV) after vaccination in cattle. Day-of-challenge sera from animals that had been vaccinated 21 days before with monovalent formulations containing inactivated A Iran 96 or A Iran 99 virus strains were used. Challenge and serology were performed with A22 Iraq strain. IgG1 titers and total-IgG avidity indexes were significantly higher in protected animals (p < 0.01) while IgG2-titers were not related to protection (p > 0.05). An IgG1 avidity ELISA was developed to analyze in one step, IgG1 levels and avidity. This assay estimated protection with 96 % accuracy. A strong agreement with challenge results was achieved (K = 0.85), suggesting a role of high-affinity IgG1 in protection against FMDV. These results support the assessment of the single dilution IgG1-Avidity ELISA to predict cross-protection in FMDV-vaccinated cattle.

12.
Acad Radiol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866688

RESUMEN

RATIONALE AND OBJECTIVES: The role of lactate dehydrogenase A (LDHA) expression in differentiated thyroid cancer (DTC), especially in radioiodine-refractory DTC, remains unclear. The aim of this study was to analyse the relationships and the prognostic value of LDHA, glycolysis, and radioactive iodine (RAI) avidity in DTC. METHODS: DTC patients who underwent 18F-FDG PET/CT and subsequent total thyroidectomy or metastasectomy were enroled. The expression levels of LDHA, glucose transporters (Glut) and Ki67 proteins in tumour tissue were measured using immunohistochemistry. The maximum standardised uptake value (SUVmax), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) of 18F-FDG PET/CT were measured. A radioiodine whole body scan was used to determine lesion radioiodine avidity. RESULTS: 69 patients with DTC were enroled in this study, including 37 women (53.6%) and 32 men (46.4%), with a median age of 52 years (11 to 77 years). Regarding the pathological category, papillary thyroid cancer was documented in 50 patients (72.5%), while follicular and poorly differentiated thyroid cancer were found in 12 patients (17.4%) and seven patients (10.1%), respectively. Distant metastases were observed in 27 (39.1%) patients; 34 (49.3%) were classified as stage I, 16 (23.2%) as stage II, and 3 (4.3%) and 16 (23.2%) patients in stages III and IV, respectively. LDHA expression levels were correlated with Glut3 expression levels (r = 0.395, P = 0.003) and SUVmax (r = 0.408, P = 0.002). The median LDHA expression and lesion SUVmax of the RAI avidity group were lower than those of the non-RAI avidity group (200 vs. 285, P = 0.036; 3.06 vs. 8.38, P = 0.038, respectively). Elevated SUVmax (P = 0.004), MTV (P = 0.014), TLG (P = 0.001) and LDHA expression (P = 0.048) led to shorter time to progression (TTP); Cox regression analysis revealed that TLG (HR: 4.773, P = 0.047) was an independent prognostic factor of TTP. CONCLUSION: Elevated LDHA is correlated with increased glucose metabolism, decreased radioiodine avidity, and accelerated disease progression. Moreover, 18F-FDG PET/CT acting as "in vivo pathology" is an excellent predictor of DTC prognosis.

13.
MAbs ; 16(1): 2361585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38849969

RESUMEN

Monoclonal antibodies (mAbs) as therapeutics necessitate favorable pharmacokinetic properties, including extended serum half-life, achieved through pH-dependent binding to the neonatal Fc receptor (FcRn). While prior research has mainly investigated IgG-FcRn binding kinetics with a focus on single affinity values, it has been shown that each IgG molecule can engage two FcRn molecules throughout an endosomal pH gradient. As such, we present here a more comprehensive analysis of these interactions with an emphasis on both affinity and avidity by taking advantage of switchSENSE technology, a surface-based biosensor where recombinant FcRn was immobilized via short DNA nanolevers, mimicking the membranous orientation of the receptor. The results revealed insight into the avidity-to-affinity relationship, where assessing binding through a pH gradient ranging from pH 5.8 to 7.4 showed that the half-life extended IgG1-YTE has an affinity inflection point at pH 7.2, reflecting its engineering for improved FcRn binding compared with the wild-type counterpart. Furthermore, IgG1-YTE displayed a pH switch for the avidity enhancement factor at pH 6.2, reflecting strong receptor binding to both sides of the YTE-containing Fc, while avidity was abolished at pH 7.4. When compared with classical surface plasmon resonance (SPR) technology and complementary methods, the use of switchSENSE demonstrated superior capabilities in differentiating affinity from avidity within a single measurement. Thus, the methodology provides reliable kinetic rate parameters for both binding modes and their direct relationship as a function of pH. Also, it deciphers the potential effect of the variable Fab arms on FcRn binding, in which SPR has limitations. Our study offers guidance for how FcRn binding properties can be studied for IgG engineering strategies.


Asunto(s)
Afinidad de Anticuerpos , Antígenos de Histocompatibilidad Clase I , Inmunoglobulina G , Receptores Fc , Receptores Fc/metabolismo , Receptores Fc/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Inmunoglobulina G/química , Concentración de Iones de Hidrógeno , Afinidad de Anticuerpos/inmunología , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Unión Proteica , Cinética
14.
J Infect Dis ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888894

RESUMEN

BACKGROUND: Young children and older adults are susceptible for invasive pneumococcal disease (IPD) caused by Streptococcus pneumoniae. Pneumococcal protein-specific antibodies play a protective role against IPD; however, not much is known about the pace of acquisition, maturation, and maintenance of these antibodies throughout life. METHODS: Immunoglobulin G (IgG) and IgA levels, avidity, and/or specificity to the pneumococcal proteome in serum and saliva from healthy young children, adults, and older adults, with known carriage status, were measured by enzyme-linked immunosorbent assay (ELISA) and 2-dimensional western blotting against ΔcpsTIGR4. RESULTS: Eleven-month-old children, the youngest age group tested, had the lowest pneumococcal proteome-specific IgG and IgA levels and avidity in serum and saliva, followed by 24-month-old children and were further elevated in adult groups. Among adult groups, the parents had the highest serum and saliva IgG and IgA antibody levels. In children, antibody levels and avidity correlated with daycare attendance and presence of siblings, posing as proxy for exposure and immunization. Immunodominance patterns slightly varied throughout life. CONCLUSIONS: Humoral immunity against the pneumococcal proteome is acquired through multiple episodes of pneumococcal exposure. Low-level and low-avidity antiproteome antibody profiles in young children may contribute to their IPD susceptibility, while in overall antiproteome antibody-proficient older adults other factors likely play a role.

15.
Methods Mol Biol ; 2822: 87-100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907914

RESUMEN

Observing individual RNA molecules provides valuable insights into their regulation, interactions with other cellular components, organization, and functions. Although fluorescent light-up aptamers (FLAPs) have recently shown promise for RNA imaging, their wider applications have been mostly hindered by poor brightness and photostability. We recently developed an avidity-based FLAP known as biRhoBAST that allows for single-molecule RNA imaging in live or fixed cells and tracking individual mRNA molecules in living cells due to its excellent photostability and high brightness. Here, we present step-by-step detailed protocols starting from cloning biRhoBAST repeats into the target RNA sequence, to imaging dynamics of single mRNA molecules. Additionally, we address the validation of single-molecule imaging experiments through single-molecule fluorescence in situ hybridization (smFISH) and colocalization studies.


Asunto(s)
Aptámeros de Nucleótidos , Hibridación Fluorescente in Situ , Imagen Individual de Molécula , Aptámeros de Nucleótidos/metabolismo , Aptámeros de Nucleótidos/química , Hibridación Fluorescente in Situ/métodos , Imagen Individual de Molécula/métodos , Humanos , Colorantes Fluorescentes/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN/metabolismo
16.
Vaccines (Basel) ; 12(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38932425

RESUMEN

Mongolia experienced a nationwide measles outbreak during 1 March 2015-31 December 2016, with 49,077 cases reported to the WHO; many were among vaccinated young adults, suggesting a possible role of vaccine failure. Advanced laboratory methods, coupled with detailed epidemiological investigations, can help classify cases as vaccine failure, failure to vaccinate, or both. In this report, we conducted a study of cases to identify risk factors for breakthrough infection for a subset of laboratory-confirmed measles cases. Of the 193 cases analyzed, only 19 (9.8%) reported measles vaccination history, and 170 (88%) were uncertain. Measles-specific IgG avidity testing classified 120 (62%) cases as low IgG avidity, indicating no prior exposure to measles. Ten of these cases with low IgG avidity had a history of measles vaccination, indicating primary vaccine failure. Overall, sixty cases (31%) had high IgG avidity, indicating breakthrough infection after prior exposure to measles antigen through vaccination or natural infection, but the IgG avidity results were highly age-dependent. This study found that among young children aged 9 months-5 years, breakthrough infection was rare (4/82, 5%); however, among young adults aged 15-25 years, breakthrough infection due to secondary vaccine failure (SVF) occurred on a large scale during this outbreak, accounting for the majority of cases (42/69 cases, 61%). The study found that large-scale secondary vaccine failure occurred in Mongolia, which highlights the potential for sustained outbreaks in post-elimination settings due to "hidden" cohorts of young adults who may have experienced waning immunity. This phenomenon may have implications for the sustainability of measles elimination in countries that remain vulnerable to the importation of the virus from areas where it is still endemic. Until global measles elimination is achieved, enhanced surveillance and preparedness for future outbreaks in post- or peri-elimination countries may be required.

17.
Front Immunol ; 15: 1401471, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938560

RESUMEN

TRIM21 is a pivotal effector in the immune system, orchestrating antibody-mediated responses and modulating immune signaling. In this comprehensive study, we focus on the interaction of TRIM21 with Fc engineered antibodies and subsequent implications for viral neutralization. Through a series of analytical techniques, including biosensor assays, mass photometry, and electron microscopy, along with structure predictions, we unravel the intricate mechanisms governing the interplay between TRIM21 and antibodies. Our investigations reveal that the TRIM21 capacity to recognize, bind, and facilitate the proteasomal degradation of antibody-coated viruses is critically dependent on the affinity and avidity interplay of its interactions with antibody Fc regions. We suggest a novel binding mechanism, where TRIM21 binding to one Fc site results in the detachment of PRYSPRY from the coiled-coil domain, enhancing mobility due to its flexible linker, thereby facilitating the engagement of the second site, resulting in avidity due to bivalent engagement. These findings shed light on the dual role of TRIM21 in antiviral immunity, both in recognizing and directing viruses for intracellular degradation, and demonstrate its potential for therapeutic exploitation. The study advances our understanding of intracellular immune responses and opens new avenues for the development of antiviral strategies and innovation in tailored effector functions designed to leverage TRIM21s unique binding mode.


Asunto(s)
Anticuerpos Neutralizantes , Fragmentos Fc de Inmunoglobulinas , Unión Proteica , Ribonucleoproteínas , Humanos , Ribonucleoproteínas/inmunología , Ribonucleoproteínas/metabolismo , Anticuerpos Neutralizantes/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Ingeniería de Proteínas , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Afinidad de Anticuerpos/inmunología , Animales
18.
EJNMMI Rep ; 8(1): 9, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38748095

RESUMEN

BACKGROUND: Rejection is a major cause of mortality and morbidity in heart transplant (HTx) recipients. Current methods for diagnosing rejection have limitations. Imaging methods to map the entire left ventricle and reliably identify potential sites of rejection is lacking. Animal studies suggest FDG PET-CT (FDG PET) could have potential application in human HTx recipients. METHODS: Between December 2020 and February 2022, all HTx recipients at Harefield Hospital, London, with definite or suspected rejection underwent FDG PET in addition to routine work-up. RESULTS: Thirty HTx recipients (12 with definite and 18 with suspected rejection) underwent FDG PET scans. Overall, 12 of the 30 patients had FDG PET with increased myocardial avidity, of whom 2 died (17%). Eighteen patients of the 30 patients had FDG PET with no myocardial avidity and all are alive (100%, p = 0.15). All patients with definite rejection, scanned within 2 weeks of starting anti-rejection treatment, showed increased myocardial avidity. In 5 cases, FDG PET showed myocardial avidity beyond 6 weeks despite pulsed steroid treatment, suggesting unresolved myocardial rejection. CONCLUSION: Preliminary findings suggest FDG PET may have a role in diagnosing cardiac transplant rejection. Future blinded studies are needed to help further validate this.

19.
Methods Mol Biol ; 2808: 247-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743375

RESUMEN

Measles IgG avidity assays determine the overall strength of molecular binding between measles-specific IgG antibodies and measles virus antigens. Avidity results can distinguish recent from distant measles virus infections. Individuals who are immunologically naïve to measles virus develop low-avidity antibodies upon measles virus infection or first-time vaccination. Within 4-6 months, antibodies mature to high avidity. Measles avidity assays are most useful in the context of measles elimination. In such settings, avidity and epidemiological and clinical information are used to classify measles breakthrough infections for control and surveillance purposes and to assist in case confirmation when other laboratory results are inconclusive or nonexistent. We present a highly accurate end-titer measles avidity assay that delivers results based on IgG quality (avidity) that are independent of IgG concentration.


Asunto(s)
Anticuerpos Antivirales , Afinidad de Anticuerpos , Inmunoglobulina G , Virus del Sarampión , Sarampión , Afinidad de Anticuerpos/inmunología , Inmunoglobulina G/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Virus del Sarampión/inmunología , Sarampión/inmunología , Sarampión/virología , Antígenos Virales/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos
20.
Geroscience ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38789833

RESUMEN

Infections, despite vaccination, can be clinically consequential for frail nursing home residents (NHR). Poor vaccine-induced antibody quality may add risk for such subsequent infections and more severe disease. We assessed antibody binding avidity, as a surrogate for antibody quality, among NHR and healthcare workers (HCW). We longitudinally sampled 112 NHR and 52 HCWs who received the BNT162b2 mRNA vaccine after each dose up to the Wuhan-BA.4/5-based Omicron bivalent boosters. We quantified anti-spike, anti-receptor binding domain (RBD), and avidity levels to the ancestral Wuhan, Delta, and Omicron BA.1 & 4/5 strains. The primary vaccination series produced substantial anti-spike and RBD levels which were low in avidity against all strains tested. Antibody avidity progressively increased in the 6-8 months that followed. Avidity significantly increased after the 1st booster but not for subsequent boosters. This study underscores the importance of booster vaccination among NHR and HCWs. The 1st booster dose increases avidity, increasing vaccine-induced functional antibody. The higher cross-reactivity of higher avidity antibodies to other SARS-CoV-2 strains should translate to better protection from ever-evolving strains. Higher avidities may help explain how the vaccine's protective effects persist despite waning antibody titers after each vaccine dose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA