RESUMEN
Evasion of apoptosis promotes tumor survival and contributes to resistance to cancer therapeutics in head and neck squamous cell carcinoma (HNSCC). Our recent work has demonstrated that HNSCC's highly express pro-survival anti-apoptotic proteins Bcl-xL and Mcl-1. Nevertheless, the mechanism of HNSCC to evade apoptosis is still not well understood. We used BH3 profiling, a functional assay which measures mitochondrial depolarization in response to the introduction of BH3 peptides, to evaluate apoptosis competency and dependency upon BCL-2 family anti-apoptotic proteins in a panel of immortalized and patient-derived HNSCC lines. We assessed response to BH3 mimetics including ABT-263 (navitoclax), an inhibitor of Bcl-2/Bcl-xL/Bcl-w, and S63845, an inhibitor of Mcl-1, both as single agents and in combination. We demonstrate that apoptosis signaling appears to be intact in the majority of HNSCC cells, and they are co-dependent upon Bcl-xL and Mcl-1 for survival. We found the combination to be highly synergistic in 2D culture and in 3D organoid models of HHNSCC. Given our findings that co-dependency on Bcl-xL and Mcl-1 is common, and co-inhibition of these molecules is synergistic for growth suppression in HNSCC cells, these results elucidate the therapeutic potential of BCL-xL and MCL-1 inhibition in HNSCC.
RESUMEN
In search of selective cytotoxic compounds from Ferula species as potential leads for the treatment of various cancer diseases, a bioactivity-guided isolation study was performed on the roots of Ferula caspica M. Bieb. COLO 205 (colon), K-562 (leukemia), and MCF-7 (breast) cancer cell lines were used to monitor the cytotoxic activity of column fractions and determine the IC50 value of the active compounds. In addition to the seven known (5-11) compounds, four previously unknown compounds: kayserin A (1), kayserin B (2), 8'-epi-kayserin B angelate (3), and 3-epi-ferulin D (4) were isolated from the dichloromethane extract of the roots of F. caspica. Structure elucidation of the isolated compounds was carried out by extensive spectroscopic analyses such as 1D- and 2D-NMR spectroscopy, High-Resolution Mass Spectroscopy (HRMS), IR spectroscopy, and UV spectroscopy. Although all of the isolated compounds showed various degrees of cytotoxic activity on COLO 205, K-562, and MCF-7 cancer cell lines, the most potent compounds were identified in the following order: 1-Hydroxy-1-(1'-farnesyl)-4,6-dihydroxyacetophenone (HFDHAP, 11), 3-epi-ferulin D (3EFD, 4), and 7-desmethylferulin D (7DMFD, 6). The cytotoxic activities of all three compounds were more potent than that of the reference compound cisplatin (Cis) against all tested cancer cell lines. Still, only HFDHAP (11) was more potent than the reference compound doxorubicin (Dox) against the MCF-7 cancer cell line. The mechanism of action of these three compounds was investigated on the COLO 205 cell line. The results indicated that compounds 4, 6, and 11 trigger caspase-3/8/9 activation and suppress the anti-apoptotic protein, Bcl-xL. Molecular docking studies confirmed the interactions of the three cytotoxic molecules with the active site of the Bcl-xL protein.
RESUMEN
Currently, breast cancer is the most common cancer type, accounting for 1 in every 4 cancer cases. Leading both in mortality and incidence, breast cancer causes 1 in 4 cancer deaths. To decrease the burden of breast cancer, novel therapeutic agents which target the key hallmarks of cancer, are being explored. The Bcl-2 family of proteins has a crucial role in governing cell death, making them an attractive target for cancer therapy. As cancer chemotherapies lead to oncogenic stress, cancer cells upregulate the Bcl-2 family to overcome apoptosis, leading to failure of treatment. To fix this issue, Bcl-2 family inhibitors, which can cause cell death, have been introduced as novel therapeutic agents. Members of this group have shown promising results in in-vitro studies, and some are currently in clinical trials. In this review, we will investigate Bcl-2 family inhibitors, which are already in trials as monotherapy or combination therapy for breast cancer, and we will also highlight the result of in vitro studies of novel Bcl-2 family inhibitors on breast cancer cells. The findings of these studies have yielded encouraging outcomes regarding the identification of novel Bcl-2 family inhibitors. These compounds hold significant potential as efficacious agents for employment in both monotherapy and combination therapy settings.
RESUMEN
This study describes the synthesis and characterization of a series of novel hydrazide-hydrazone derivatives containing a 1,2,4-triazole ring. The compounds were characterized using various spectroscopic techniques, such as FT-IR, 1H-NMR, 13C-NMR, HRMS, and elemental analysis. The antiproliferative activity of the synthesized compounds was evaluated against a panel of human cancer cell lines (HCT-116, HepG-2, KLN205, LTPA, U138, and SW620) and healthy cell lines (HSkMC and iPSCs). Among the compounds tested, compounds 4, 5p, 5r, and 5s showed the highest effectiveness in inhibiting the growth of cancer cells with Bcl-xL inhibitory concentration (IC50) values. These compounds further demonstrated selective cytotoxicity against the Bcl-xL-dependent lymphoma cell line (DBs). Molecular docking studies were also performed to investigate the potential binding interactions of compounds 4, 5p, 5r, and 5s with the active site of Bcl-xL (PDB ID: 7LH7, 1.4 Å). Mechanistic studies revealed that compounds 4, 5r, and 5s induced apoptosis predominantly through the intrinsic mitochondrial pathway, while compound 5p exhibited a distinct cell cycle arrest profile, impacting both the S and G2/M phases. Western blot analysis suggested that these compounds may downregulate cyclin expression, thereby blocking its association with Bcl-xL. Overall, these results demonstrate the potential of these novel hydrazide-hydrazone derivatives as anticancer agents with activity comparable or superior to doxorubicin and 5-fluorouracil.
RESUMEN
Nuclear Bcl-xL is found to promote cancer metastasis independently of its mitochondria-based anti-apoptotic activity. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates histone H3 trimethyl Lys4 (H3K4me3) modification have yet to be understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds to Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced invasion and metastasis in mouse models. Furthermore, knockout of CtBP2 not only reduces the nuclear portion of Bcl-xL but also suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of the MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFß mRNA upregulation, as well as invasion. Moreover, the cleavage under targets and release using nuclease (CUT&RUN) assay coupled with next-generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor regions of genes encoding TGFß and its signaling pathway members in cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1 and this study offers new therapeutic strategies to treat Bcl-xL-overexpressing cancer.
Asunto(s)
Oxidorreductasas de Alcohol , Núcleo Celular , Proteínas Co-Represoras , Epigénesis Genética , Histonas , Proteína bcl-X , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Humanos , Animales , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Ratones , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Núcleo Celular/metabolismo , Histonas/metabolismo , Histonas/genética , Línea Celular Tumoral , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Metástasis de la Neoplasia , Regulación Neoplásica de la Expresión Génica , FemeninoRESUMEN
Chromosome instability (CIN) and subsequent aneuploidy are prevalent in various human malignancies, influencing tumor progression such as metastases and relapses. Extensive studies demonstrate the development of chemoresistance in high-CIN tumors, which poses significant therapeutic challenges. Given the association of CIN with poorer prognosis and suppressed immune microenvironment observed in colorectal carcinoma (CRC), here we aimed to discover chemotherapeutic drugs exhibiting increased inhibition against high-CIN CRC cells. By using machine learning methods, we screened out two BCL-XL inhibitors Navitoclax and WEHI-539 as CIN-sensitive reagents in CRC. Subsequent analyses using a CIN-aneuploidy cell model confirmed the vulnerability of high-CIN CRC cells to these drugs. We further revealed the critical role of BCL-XL in the viability of high-CIN CRC cells. In addition, to ease the evaluation of CIN levels in clinic, we developed a three-gene signature as a CIN surrogate to predict prognosis, chemotherapeutic and immune responses in CRC samples. Our results demonstrate the potential value of CIN as a therapeutic target in CRC treatment and the importance of BCL-XL in regulating survival of high-CIN CRC cells, therefore representing a valuable attempt to translate a common trait of heterogeneous tumor cells into an effective therapeutic target.
Asunto(s)
Compuestos de Anilina , Antineoplásicos , Inestabilidad Cromosómica , Neoplasias Colorrectales , Proteína bcl-X , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Inestabilidad Cromosómica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Supervivencia Celular/efectos de los fármacos , Aprendizaje AutomáticoRESUMEN
INTRODUCTION: Cancer is a prominent cause of death globally, triggered by both non-genetic and genetic alterations in genes influenced by various environmental factors. The tetrahydroisoquinoline (THIQ), specifically 1,2,3,4-tetrahydroisoquinoline serves as fundamental element in various alkaloids, prevalent in proximity to quinoline and indole alkaloids. AREA COVERED: In this review, the therapeutic applications of THIQ derivatives as an anticancer agent from 2016 to 2024 have been examined. The patents were gathered through comprehensive searches of the Espacenet, Google patent, WIPO, and Sci Finder databases. The therapeutic areas encompassed in the patents include numerous targets of cancer. EXPERT OPINION: THIQ analogues play a crucial role in medicinal chemistry, with many being integral to pharmacological processes and clinical trials. Numerous THIQ compounds have been synthesized for therapeutic purposes, notably in cancer treatment. They show great promise for developing anticancer drugs, demonstrating strong affinity and efficacy against various cancer targets. The creation of multi-target ligands is a compelling avenue for THIQ-based anticancer drug discovery.
Asunto(s)
Antineoplásicos , Desarrollo de Medicamentos , Neoplasias , Patentes como Asunto , Tetrahidroisoquinolinas , Humanos , Tetrahidroisoquinolinas/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Descubrimiento de Drogas , Química Farmacéutica , Diseño de FármacosRESUMEN
Outcomes are poor in patients with advanced or relapsed Ewing sarcoma (EWS) and current treatments have significant short- and long-term side effects. New, less toxic and more effective treatments are urgently needed. MER proto-oncogene tyrosine kinase (MERTK) promotes tumor cell survival, metastasis, and resistance to cytotoxic and targeted therapies in a variety of cancers. MERTK was ubiquitously expressed in five EWS cell lines and five patient samples. Moreover, data from CRISPR-based library screens indicated that EWS cell lines are particularly dependent on MERTK. Treatment with MRX-2843, a first-in-class, MERTK-selective tyrosine kinase inhibitor currently in clinical trials, decreased the phosphorylation of MERTK and downstream signaling in a dose-dependent manner in A673 and TC106 cells and provided potent anti-tumor activity against all five EWS cell lines, with IC50 values ranging from 178 to 297 nM. Inhibition of MERTK correlated with anti-tumor activity, suggesting MERTK inhibition as a therapeutic mechanism of MRX-2843. Combined treatment with MRX-2843 and BCL-2 inhibitors venetoclax or navitoclax provided enhanced therapeutic activity compared to single agents. These data highlight MERTK as a promising therapeutic target in EWS and provide rationale for the development of MRX-2843 for the treatment of EWS, especially in combination with BCL-2 inhibitors.
RESUMEN
Retinal neurodegeneration, characterized by retinal ganglion cell (RGC) death, is a leading cause of vision impairment and loss in blind diseases, such as glaucoma. Müller cells play crucial roles in maintaining retinal homeostasis. Thus, dysfunction of Müller cells has been implicated as one of the causes of retinal diseases. Yes-associated protein 1 (YAP), a nuclear effector of the Hippo pathway, regulates mammalian cell survival. In this study, we investigated the role of YAP in Müller cells during N-methyl-D-aspartic acid (NMDA)-induced excitotoxic RGC injury in rats. We found that YAP expression increased and was activated in Müller cells after NMDA-induced RGC injury. This YAP response was partly due to an increase in Yap mRNA levels, although it may be independent of the Hippo pathway and ß-TrCP-mediated YAP degradation. Morphological analysis revealed that verteporfin, a selective YAP inhibitor, exacerbated NMDA-induced RGC degeneration, suggesting that YAP activation in Müller cells contributes to RGC survival in NMDA-treated retinas. Studies in the rat Müller cell line (rMC-1) demonstrated that overexpression of YAP increased the levels of Bcl-xL, while verteporfin decreased the levels of Bcl-xL and cell viability and increased the levels of cytochrome c released from mitochondria and cleaved caspase-3. Finally, we found that Bcl-xL expression increased slightly in NMDA-treated retinas, whereas intravitreal injection of verteporfin suppressed this increase. Our findings suggest that activated YAP in Müller cells protects against NMDA-induced RGC injury by upregulating Bcl-xL expression.
RESUMEN
Proteasome inhibitors have been employed in the treatment of relapsed multiple myeloma and mantle cell lymphoma. The observed toxicity caused by proteasome inhibitors is a universal phenotype in numerous cancer cells with different sensitivity. In this study, we investigate the conserved mechanisms underlying the toxicity of the proteasome inhibitor bortezomib using gene editing approaches. Our findings utilizing different caspase knocking out cells reveal that bortezomib induces classic intrinsic apoptosis by activating caspase-9 and caspase-3/7, leading to pore-forming protein GSDME cleavage and subsequent lytic cell death or called secondary necrosis, a phenotype also observed in many apoptosis triggers like TNFα plus CHX, DTT and tunicamycin treatment in HeLa cells. Furthermore, through knocking out of nearly all BH3-only proteins including BIM, BAD, BID, BMF and PUMA, we demonstrate that NOXA is the sole BH3-only protein responsible for bortezomib-induced apoptosis. Of note, NOXA is well known for selectively binding to MCL-1 and A1, but our studies utilizing different BH3 mimetics as well as immunoprecipitation assays indicate that, except for the constitutive interaction of NOXA with MCL-1, the accumulation of NOXA after bortezomib treatment allows it to interact with BCL-XL, then simultaneous relieving suppression on apoptosis by both anti-apoptotic proteins BCL-XL and MCL-1. In addition, though bortezomib-induced significant ER stress and JNK activation were observed in the study, further genetic depletion experiments prove that bortezomib-induced apoptosis occurs independently of ER stress-related apoptosis factor CHOP and JNK. In summary, these results provide a solid conclusion about the critical role of NOXA in inactivation of BCL-XL except MCL-1 in bortezomib-induced apoptosis.
Asunto(s)
Apoptosis , Bortezomib , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Inhibidores de Proteasoma , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína bcl-X , Humanos , Apoptosis/efectos de los fármacos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Bortezomib/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Inhibidores de Proteasoma/farmacología , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Células HeLa , Sistema de Señalización de MAP Quinasas/efectos de los fármacosRESUMEN
BACKGROUND AND PURPOSE: Liver cancer is the fourth leading cause of cancer-related death worldwide, with hepatocellular carcinoma (HCC) being the most common type of primary liver cancer. APG-1252 is a small molecule inhibitor targeting Bcl-2 and Bcl-xl. However, its anti-tumor effects in HCC, alone or in combination with Cabozantinib, have not been extensively studied. EXPERIMENTAL: Approach: TCGA database analysis was used to analysis the gene expression levels of Bcl-2 and Bcl-xl in HCC tissues. Western blot was employed to detect the protein expression levels. And the inhibitory effects of APG-1252 and Cabozantinib on the proliferation of HCC cell lines was detected by CCK-8. The effect on the migration and invasion of HCC cells was verified by transwell assay. Huh7 xenograft model in nude mice was used to investigate the combination antitumor effect in vivo. KEY RESULTS: Our study demonstrated that APG-1252 monotherapy inhibited the proliferation and migration ability of HCC cells, and induced HCC cells apoptosis. The combination of APG-1252 and Cabozantinib showed significant synergistic antitumor effects. Furthermore, the in vivo experiment demonstrated that the combination therapy exerted a synergistic effect in delaying tumor growth, notably downregulating MEK/ERK phosphorylation levels. In terms of mechanism, Cabozantinib treatment caused an increase in the phosphorylation levels of CREB and Bcl-xl proteins, while the combination with APG-1252 mitigated this effect, thereby enhanced the antitumor effect of Cabozantinib. CONCLUSION AND IMPLICATIONS: Our findings suggest that APG-1252 in combination with Cabozantinib offers a more effective treatment strategy for HCC patients, warranting further clinical investigation.
Asunto(s)
Anilidas , Carcinoma Hepatocelular , Proliferación Celular , Neoplasias Hepáticas , Ratones Desnudos , Piridinas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X , Animales , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Anilidas/farmacología , Anilidas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos BALB C , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , MasculinoRESUMEN
The mechanisms underlying the development of steroid resistance in asthma remain unclear. To establish whether as well as the mechanisms by which the activation of Janus kinases (JAKs) is involved in the development of steroid resistance in asthma, murine steroid-resistant models of the proliferation of group 2 innate lymphoid cells (ILC2s) in vitro and asthmatic airway inflammation in vivo were analysed. ILC2s in the lungs of BALB/c mice were sorted and then incubated with IL-33, thymic stromal lymphopoietin (TSLP), and/or IL-7 with or without dexamethasone (10 nM), the pan-JAK inhibitor, delgocitinib (1-10 000 nM), and/or the Bcl-xL inhibitor, navitoclax (1-100 nM), followed by the detection of viable and apoptotic cells. The anti-apoptotic factor, Bcl-xL was detected in ILC2s by flow cytometry. As a steroid-resistant asthma model, ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at a high dose of 500 µg four times. Dexamethasone (1 mg/kg, i.p.), delgocitinib (3-30 mg/kg, p.o.), or navitoclax (30 mg/kg, p.o.) was administered during the challenges. Cellular infiltration into the lungs was analysed by flow cytometry. Airway remodelling was histologically evaluated. The following results were obtained. (1) Cell proliferation concomitant with a decrease in apoptotic cells was induced when ILC2s were cultured with TSLP and/or IL-7, and was potently inhibited by dexamethasone. In contrast, when the culture with TSLP and IL-7 was performed in the presence of IL-33, the proliferative response exhibited steroid resistance. Steroid-resistant ILC2 proliferation was suppressed by delgocitinib in a concentration-dependent manner. (2) The culture with IL-33, TSLP, and IL-7 induced the overexpression of Bcl-xL, which was clearly inhibited by delgocitinib, but not by dexamethasone. When ILC2s were treated with navitoclax, insensitivity to dexamethasone was significantly cancelled. (3) The development of airway remodelling and the infiltration of ILC2s into the lungs in the asthma model were not suppressed by dexamethasone, but were dose-dependently inhibited by delgocitinib. Combination treatment with dexamethasone and either delgocitinib or navitoclax synergistically suppressed these responses. Therefore, JAKs appear to play significant roles in the induction of steroid resistance by up-regulating Bcl-xL in ILC2s. The inhibition of JAKs and Bcl-xL has potential as pharmacotherapy for steroid-resistant asthma, particularly that mediated by ILC2s.
Asunto(s)
Asma , Dexametasona , Resistencia a Medicamentos , Inmunidad Innata , Quinasas Janus , Linfocitos , Ratones Endogámicos BALB C , Proteína bcl-X , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Proteína bcl-X/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/efectos de los fármacos , Ratones , Dexametasona/farmacología , Dexametasona/uso terapéutico , Inmunidad Innata/efectos de los fármacos , Quinasas Janus/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/efectos de los fármacos , Femenino , Citocinas/metabolismo , Modelos Animales de Enfermedad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Interleucina-33/metabolismo , Linfopoyetina del Estroma Tímico , Sulfonamidas/farmacologíaRESUMEN
Traditional therapies often struggle with specificity and resistance in case of cancer treatments. It is therefore important to investigate new approaches for cancer treatment based on nanotechnology. Zinc oxide nanoparticles (ZnONPs) are known to exhibit anti-cancer properties by inducing oxidative stress, apoptosis, and cell cycle arrest. Methotrexate (MTX) a known anti-folate shows specificity to folate receptors and interrupts healthy functioning of cells. This study proposes the use of previously characterized biocompatible Methotrexate loaded Zinc oxide nanoparticles (MTX-ZnONPs) as a dual action therapeutic strategy against breast cancer cell lines, MCF-7 (MTX-sensitive) and MDA-MB-231 (MTX-resistant). To elucidate the cytotoxicity mechanism of MTX-ZnONPs an in depthIn vitrostudy was carried out.In vitroassays, including cell cycle analysis, apoptosis assay, and western blot analysis to study the protein expression were performed. Results of these assays, further supported the anti-cancer activity of MTX-ZnONPs showing apoptotic and necrotic activity in MCF-7 and MDA-MB-231 cell line respectively.In vivoacute oral toxicity study to identify the LD50in animals revealed no signs of toxicity and mortality up to 550 mg kg-1body weight of animal, significantly higher LD50values than anticipated therapeutic levels and safety of the synthesized nanosystem. The study concludes that MTX-ZnONPs exhibit anti-cancer potential against breast cancer cells offering a promising strategy for overcoming resistance.
Asunto(s)
Apoptosis , Neoplasias de la Mama , Metotrexato , Óxido de Zinc , Metotrexato/farmacología , Metotrexato/química , Metotrexato/administración & dosificación , Humanos , Óxido de Zinc/química , Óxido de Zinc/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Células MCF-7 , Apoptosis/efectos de los fármacos , Animales , Línea Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacosRESUMEN
Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested. Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.
RESUMEN
Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors' growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors.
Asunto(s)
Viroterapia Oncolítica , Tolerancia a Radiación , Sarcoma , Proteína p53 Supresora de Tumor , Proteína bcl-X , Sarcoma/terapia , Sarcoma/radioterapia , Humanos , Viroterapia Oncolítica/métodos , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ratones , Apoptosis , Adenoviridae/genéticaRESUMEN
Hematopoietic reconstitution after hematopoietic stem cell transplantation (HSCT) is influenced by the number of transplanted cells. However, under certain conditions donor cell counts are limited and impair clinical outcome. Hematopoietic stem and progenitor cell (HSPC) expansion prior to HSCT is a widely used method to achieve higher donor cell counts and minimize transplantation-related risks such as graft failure or delayed engraftment. Still, expansion in a non-physiological environment can trigger cell death mechanisms and hence counteract the desired effect. We have shown earlier that during HSCT a relevant amount of HSPCs were lost due to apoptosis and that cell death inhibition in donor HSPCs improved engraftment in xenotransplantation experiments. Here, we assessed the effect of combined ex vivo expansion and cell death inhibition on HSPC yield and their reconstitution potential in vivo. During expansion with cytokines and the small molecule inhibitor StemRegenin 1, concomitant lentiviral overexpression of antiapoptotic BCL-XL resulted in an increased yield of transduced HSPCs. Importantly, BCL-XL overexpression enhanced the reconstitution potential of HSPCs in xenotransplantation experiments in vivo. In contrast, treatment with caspase and necroptosis inhibitors had no favorable effects on HSPC yields nor on cell viability. We postulate that overexpression of antiapoptotic BCL-XL, both during ex vivo expansion and transplantation, is a promising approach to improve the outcome of HSCT in situations with limited donor cell numbers. However, such apoptosis inhibition needs to be transient to avoid long-term sequelae like leukemia.
Asunto(s)
Apoptosis , Lentivirus , Trasplante Heterólogo , Lentivirus/genética , Células Madre Hematopoyéticas , Muerte CelularRESUMEN
Introduction: BCL-2 family proteins are important for tumour cell survival and drug resistance in multiple myeloma (MM). Although proteasome inhibitors are effective anti-myeloma drugs, some patients are resistant and almost all eventually relapse. We examined the function of BCL-2 family proteins in stromal-mediated resistance to carfilzomib-induced cytotoxicity in MM cells. Methods: Co-cultures employing HS5 stromal cells were used to model the interaction with stroma. MM cells were exposed to CFZ in a 1-hour pulse method. The expression of BCL-2 family proteins was assessed by flow cytometry and WB. Pro-survival proteins: MCL-1, BCL-2 and BCL-XL were inhibited using S63845, ABT-199 and A-1331852 respectively. Changes in BIM binding partners were examined by immunoprecipitation and WB. Results: CFZ induced dose-dependent cell death of MM cells, primarily mediated by apoptosis. Culture of MM cells on HS-5 stromal cells resulted in reduced cytotoxicity to CFZ in a cell contact-dependent manner, upregulated expression of MCL-1 and increased dependency on BCL-XL. Inhibiting BCL-XL or MCL-1 with BH-3 mimetics abrogated stromal-mediated protection only at high doses, which may not be achievable in vivo. However, combining BH-3 mimetics at sub-therapeutic doses, which alone were without effect, significantly enhanced CFZ-mediated cytotoxicity even in the presence of stroma. Furthermore, MCL-1 inhibition led to enhanced binding between BCL-XL and BIM, while blocking BCL-XL increased MCL-1/BIM complex formation, indicating the cooperative role of these proteins. Conclusion: Stromal interactions alter the dependence on BCL-2 family members, providing a rationale for dual inhibition to abrogate the protective effect of stroma and restore sensitivity to CFZ.
RESUMEN
INTRODUCTION: Gemcitabine (GEM) is often used to treat pancreatic cancer. Many anti-cancer drugs induce cancer cell death, but some cells survive after cell cycle arrest. Such a response to DNA damage is termed cellular senescence. Certain drugs, including the Bcl-2-family inhibitor ABT-263, kill senescent cells; this is termed senolysis. In this study, we examined the therapeutic benefits of ABT-263 in GEM-induced senescence of human pancreatic cancer cells. METHODS AND RESULTS: Of four pancreatic cancer cell lines (PANC-1, AsPC-1, CFPAC-1, and PANC10.05), GEM induced senescent features in PANC-1 and AsPC-1 cells, including increases in the cell sizes and expression levels of mRNAs encoding interleukin (IL)-6/IL-8 and induction of ß-galactosidase. Successive treatment with GEM and ABT-263 triggered apoptosis in PANC-1 and AsPC-1 cells and suppressed colony formation significantly. Senolysis of GEM-induced senescent pancreatic cancer cells by ABT-263 was triggered by a Bcl-xL inhibitor, but not by a Bcl-2 inhibitor, suggesting a central role for Bcl-xL in senolysis. In a xenograft mouse model, combined treatment with GEM and ABT-737 (an ABT-263 analog exhibiting the same specificity) suppressed in vivo growth of AsPC-1 significantly. CONCLUSION: Together, our results indicate that sequential treatment with GEM and senolytic drugs effectively kill human pancreatic cancer cells.
Asunto(s)
Compuestos de Anilina , Apoptosis , Senescencia Celular , Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Sulfonamidas , Ensayos Antitumor por Modelo de Xenoinjerto , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Senescencia Celular/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Ratones , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Ratones Desnudos , Proliferación Celular/efectos de los fármacos , Senoterapéuticos/farmacologíaRESUMEN
BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216 + venetoclax in reducing the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b was found to lead to significant tumor growth delay, similar to the DT2216 + venetoclax combination in H146 xenografts, by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. At this dosage, 753b was well tolerated in mice, without observable induction of severe thrombocytopenia as seen with navitoclax, and no evidence of significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients, warranting clinical trials in future.
Asunto(s)
Compuestos de Anilina , Antineoplásicos , Compuestos Bicíclicos Heterocíclicos con Puentes , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Sulfonamidas , Trombocitopenia , Humanos , Ratones , Animales , Neoplasias Pulmonares/tratamiento farmacológico , Proteína bcl-X/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Antineoplásicos/farmacología , Modelos Animales de EnfermedadRESUMEN
Melanoma is the most lethal skin malignancy. Fucoxanthin is a marine carotenoid with significant anticancer activities. Intriguingly, Fucoxanthin's impact on human melanoma remains elusive. Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising target in cancer therapy due to its persistent activation in various cancers, including melanoma. Herein, we revealed that Fucoxanthin is cytotoxic to human melanoma cell lines A2758 and A375 while showing limited cytotoxicity to normal human melanocytes. Apoptosis is a primary reason for Fucoxanthin's melanoma cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk drastically abrogated Fucoxanthin-elicited clonogenicity blockage. Besides, Fucoxanthin downregulated tyrosine 705-phosphorylated STAT3 (p-STAT3 (Y705)), either inherently present in melanoma cells or inducible by interleukin 6 (IL-6) stimulation. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, abolished Fucoxanthin-elicited melanoma cell apoptosis and clonogenicity inhibition, supporting the pivotal role of STAT3 blockage in Fucoxanthin's melanoma cytotoxicity. Moreover, Fucoxanthin lowered BCL-xL levels by blocking STAT3 activation, while ectopic BCL-xL expression rescued melanoma cells from Fucoxanthin-induced killing. Lastly, Fucoxanthin was found to diminish the levels of JAK2 with dual phosphorylation at tyrosine residues 1007 and 1008 in melanoma cells, suggesting that Fucoxanthin impairs STAT3 signaling by blocking JAK2 activation. Collectively, we present the first evidence that Fucoxanthin is cytotoxic selectively against human melanoma cells while sparing normal melanocytes. Mechanistically, Fucoxanthin targets the JAK2/STAT3/BCL-xL antiapoptotic axis to provoke melanoma cell death. This discovery implicates the potential application of Fucoxanthin as a chemopreventive or therapeutic strategy for melanoma management.