Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39032686

RESUMEN

INTRODUCTION: Muscle atrophy, fibrosis and fatty infiltration (FI) are commonly seen in rotator cuff tears (RCT), which are critical factors that directly determine the clinical outcomes for patients with this injury. Therefore, improving muscle quality after RCT is crucial in improving the clinical outcome of tendon repair. In recent years, it has been discovered that adults have functional beige/brown adipose tissue (BAT) which can secrete batokines to promote muscle growth. PRDM16, a PR-domain containing protein, was discovered with the ability to determine the brown fat cell fate and stimulate its development. Thus, the goal of this study is to discover the role of PRDM16 in improving muscle function after massive tendon tears using a transgenic mouse model with an elevated level of PRDM16 expression. METHODS: Transgenic aP2 driven PRDM16 overexpression mice and C57BL/6J mice underwent unilateral supraspinatus (SS) tendon transection and suprascapular nerve transection (TTDN) as described previously (N=8 in each group). DigiGait was performed to evaluate forelimb function at 6 weeks post the TTDN injury. Bilateral SS muscles, interscapular brown fat, epididymal white fat, and inguinal beige fat were harvested for analysis. The expression of PRDM16 in adipose tissue was detected by Western Blot. Masson's trichome staining was conducted to evaluate the muscle fibrosis and Oil Red O staining was used to determine the fat infiltration. Muscle fiber type was determined by MHC expression via immunostaining. All data was presented in the form of mean±SD. T-test and two-way ANOVA analysis was performed to determine a statistically significant difference between groups. Significance was considered when P<0.05. RESULTS: Western blot data showed an increased expression of PRDM16 protein in both white and brown fat in PRDM16-overexpression mice compared to wild-type (WT) mice. Even though PRDM16 overexpression had no effect on increasing muscle weight, it significantly improved the forelimbs function with longer brake, stance and stride time, larger stride length and paw area in mice after RCT. Additionally, PRDM16 overexpression mice showed no difference in amount of fibrosis when compared to WT mice, however, they had significantly reduced area of fatty infiltration. These mice also exhibited abundant MHC-IIx fiber percentage in supraspinatus muscle after TTDN. CONCLUSION: Overexpression of PRDM16 significantly improved muscle function and reduced fatty infiltration after rotator cuff tears. Promoting BAT activity is beneficial in improving rotator cuff muscle quality and shoulder function after RCT.

2.
J Orthop Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967130

RESUMEN

Chronic rotator cuff (RC) injuries can lead to a degenerative microenvironment that favors chronic inflammation, fibrosis, and fatty infiltration. Recovery of muscle structure and function will ultimately require a complex network of muscle resident cells, including satellite cells, fibro-adipogenic progenitors (FAPs), and immune cells. Recent work suggests that signaling from adipose tissue and progenitors could modulate regeneration and recovery of function, particularly promyogenic signaling from brown or beige adipose (BAT). In this study, we sought to identify cellular targets of BAT signaling during muscle regeneration using a RC BAT transplantation mouse model. Cardiotoxin injured supraspinatus muscle had improved mass at 7 days postsurgery (dps) when transplanted with exogeneous BAT. Transcriptional analysis revealed transplanted BAT modulates FAP signaling early in regeneration likely via crosstalk with immune cells. However, this conferred no long-term benefit as muscle mass and function were not improved at 28 dps. To eliminate the confounding effects of endogenous BAT, we transplanted BAT in the "BAT-free" uncoupling protein-1 diphtheria toxin fragment A (UCP1-DTA) mouse and here found improved muscle contractile function, but not mass at 28 dps. Interestingly, the transplanted BAT increased fatty infiltration in all experimental groups, implying modulation of FAP adipogenesis during regeneration. Thus, we conclude that transplanted BAT modulates FAP signaling early in regeneration, but does not grant long-term benefits.

3.
J Clin Med ; 13(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38610736

RESUMEN

With a dramatic increase in the number of obese and overweight people, there is a great need for new anti-obesity therapies. With the discovery of the functionality of brown adipose tissue in adults and the observation of beige fat cells among white fat cells, scientists are looking for substances and methods to increase the activity of these cells. We aimed to describe how scientists have concluded that brown adipose tissue is also present and active in adults, to describe where in the human body these deposits of brown adipose tissue are, to summarize the origin of both brown fat cells and beige fat cells, and, last but not least, to list some of the substances and methods classified as BAT promotion agents with their benefits and side effects. We summarized these findings based on the original literature and reviews in the field, emphasizing the discovery, function, and origins of brown adipose tissue, BAT promotion agents, and batokines. Only studies written in English and with a satisfying rating were identified from electronic searches of PubMed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA