Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 539
Filtrar
1.
Pestic Biochem Physiol ; 204: 106082, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277395

RESUMEN

Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. ß-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications. Nanotechnology can enhance the effectiveness and dispersion of volatile organic compounds (VOCs). In this study, a nanoliposome carrier was constructed by ethanol injection and ultrasonic dispersion method, and ß-caryophyllene was wrapped inside it, thus solving the defect of poor solubility of ß-caryophyllene. The size of the ß-caryophyllene nanoliposomes (C-BT-NPs) was around 200 nm, with the absolute value of the zeta potential exceeding 30 mV and a PDI below 0.5. The stability was also maintained over a 14-d storage period. C-BT-NPs showed effective insecticidal activity against B. tabaci, with an LC50 of 1.51 g/L, outperforming thiamethoxam and offering efficient agricultural pest control. Furthermore, C-BT-NPs had minimal short-term impact on the growth of tomato plants, indicating that they are safety on plants. Therefore, the VOCs using nanoliposome preparation technology show promise in reducing reliance on conventional pesticides and present new approaches to managing agricultural pests.


Asunto(s)
Hemípteros , Insecticidas , Liposomas , Sesquiterpenos Policíclicos , Animales , Hemípteros/efectos de los fármacos , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/química , Insecticidas/farmacología , Insecticidas/química , Nanopartículas/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Solanum lycopersicum/parasitología , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología
2.
Gene ; 933: 148926, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255858

RESUMEN

Cotton (Gossypium hirsutum L.) is of great economic importance as a cultivated crop in many parts of the world. In addition to being a pillar of the textile industry, cotton and its byproducts are used for livestock feed, seed oil, and other products. Bacillus thuringiensis crystal toxin (Bt) expression in cotton provides effective protection against chewing insects but does not defend plants from piercing/sucking insect pests. With the aim to create transgenic plants with resistance against piercing/sucking pests, we used Agrobacterium-mediated genetic transformation of cotton cultivar Coker 312 to express the Allium sativum leaf agglutinin (ASLA) gene from the phloem-specific rolC promoter. The ASLA transgene was stably inherited and showed Mendelian segregation in the T1 generation. Transgenic lines, expressing the ASLA gene, showed explicit resistance against major sap-sucking pests. Green peach aphid (Myzus persicae Sulzer) choice assays showed that 75% of aphids preferred untransformed cotton plants relative to those expressing the ASLA gene. In detached leaf bioassays, plants expressing ASLA caused 82% aphid mortality and 44-53% reduction in fecundity. Clip cage bioassays with whiteflies (Bemisia tabaci Gennadius) showed 74-82% mortality and 44-60% decrease in fecundity due to ASLA gene expression. In whole plant bioassays, whiteflies showed 77% mortality and a 54% decrease in fecundity on ASLA transgenics. Importantly, we did not observe a negative effect of the ASLA gene on ladybugs (Coccinella septempunctata) that consumed these whiteflies. Together, our findings demonstrate the potential of ASLA-transgenic cotton for providing protection against two devastating insect pests, whiteflies and aphids. The ASLA-transgenic cotton appears promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.

3.
J Econ Entomol ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316688

RESUMEN

Bemisia tabaci (Gennadius), a major pest that can adversely affect economies and agriculture globally, is particularly sensitive to climate change-induced temperature fluctuations, which can intensify its outbreaks. Orius similis Zheng, a primary natural predator of B. tabaci, also experiences temperature-related effects that influence its biocontrol efficacy. Thus, understanding the response of O. similis to temperature changes is pivotal for optimizing its biocontrol potential. Herein, our investigations showed that the functional response of O. similis to both high- and low-instar nymphs of B. tabaci adheres to the type II model at temperatures of 19, 22, 25, 28, and 31 °C. At 28 °C, O. similis exhibits the highest instantaneous attack rate (high-instar: 1.1580, low-instar: 1.2112), and the shortest handling time per prey (high-instar: 0.0218, low-instar: 0.0191). The efficacy of O. similis in controlling B. tabaci nymphs follows the sequence: 28 °C > 25 °C > 31 °C > 22 °C > 19 °C. Additionally, search efficiency inversely correlates with prey density. Simulations using the Hessell-Varley interference model indicate that increased density of O. similis under any temperature condition leads to reduced predation rates. Moreover, O. similis shows a predation preference for low-instar nymphs of B. tabaci, with higher predation level observed at the same temperature. In conclusion, for effective control of B. tabaci in field releases, O. similis should be optimally released at temperatures between 25 and 28 °C to preferably target the egg or early nymph stages of B. tabaci and determining the appropriate number of O. similis is important to minimize interference among individuals and enhance biocontrol efficacy.

4.
Viruses ; 16(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39339946

RESUMEN

Cassava is an important food crop in western Kenya, yet its production is challenged by pests and diseases that require routine monitoring to guide development and deployment of control strategies. Field surveys were conducted in 2022 and 2023 to determine the prevalence, incidence and severity of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), whitefly numbers and incidence of cassava green mite (CGM) in six counties of western Kenya. Details of the encountered cassava varieties were carefully recorded to determine the adoption of improved varieties. A total of 29 varieties were recorded, out of which 13 were improved, although the improved varieties were predominant in 60% of fields and the most widely grown variety was MM96/4271. The CMD incidence was higher in 2022 (26.4%) compared to 2023 (10.1%), although the proportion of CMD attributable to whitefly infection was greater (50.6%) in 2023 than in 2022 (18.0%). The CBSD incidence in 2022 was 6.4%, while in 2023 it was 4.1%. The CMD incidence was significantly lower (5.9%) for the improved varieties than it was for the local varieties (35.9%), although the CBSD incidence did not differ significantly between the improved (2.3%) and local varieties (9.7%). Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) were both detected. Most infections were single CBSV infections (82.9%), followed by single UCBSV (34.3%) and coinfection with both viruses (16.7%). Whiteflies were more abundant in 2023, in which 28% of the fields had super-abundant populations of >100/plant, compared to 5% in 2022. KASP SNP genotyping designated 92.8% of the specimens as SSA-ECA for 2022, while it was 94.4% for 2023. The cassava green mite incidence was 65.4% in 2022 compared to 79.9% in 2023. This study demonstrates that cassava viruses, whiteflies and cassava green mites continue to be important constraints to cassava production in western Kenya, although the widespread cultivation of improved varieties is reducing the impact of cassava viruses. The more widespread application of high-quality seed delivery mechanisms could further enhance the management of these pests/diseases, coupled with wider application of IPM measures for whiteflies and mites.


Asunto(s)
Manihot , Enfermedades de las Plantas , Manihot/virología , Manihot/parasitología , Kenia/epidemiología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/parasitología , Animales , Hemípteros/virología , Potyviridae/genética , Potyviridae/aislamiento & purificación , Incidencia , Psychodidae/virología , Psychodidae/parasitología
5.
Plant Dis ; 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39342960

RESUMEN

Cotton leaf curl Multan virus(CLCuMuV; Begomovirus gossypimultanese, family Geminiviridea) is a single-stranded circular DNA virus, with a genome size of about 2.7 kb, CLCuMuV, which is commonly associated with its satellite DNA, Cotton leaf curl Multan betasatellite (CLCuMuB) (Mansoor et al., 2003), is a serious threat in cotton production causing cotton leaf curl disease (CLCuD) (Briddon et al., 2000). The spread of CLCuMuV is closely linked to its insect vector, whitefly (Bemisia tabaci), which is the exclusive vector species for CLCuMuV transmission (Pan et al., 2018). In May 2019, two spinach (Spinacia oleracea L) samples (XJBC01, XJBC02) showing upward curling of the leaf margins, vein thickening, and enation, symptoms were collected in Shihezi City, Xinjiang, China (Fig. 1B). A 570 bp fragment was amplified from the two symptomatic spinach samples using Begomovirus universal primer pair AV494 (5'-GCCYATRTAYAGRAAGCCMAG-3') and COPR (5'-GANGSATGHTRCADGCCAT ATA-3'), Sequences generated from these amplicons shared 99% nucleotide sequence identities with CLCuMuV DNA-A sequences, suggesting CLCuMuV infection in spinach. To our knowledge CLCuMuV has not been reported in spinach previously. The complete sequences of CLCuMuV and CLCuMuB were then sequenced using CLCuMuV-specific primers GD37-F (5'-GGATCCATTGTTAAACGAATTTCC-3') and GD37-R (5'-GGATCCCACATGTTTGAATTTGA-3') (Gu et al., 2015), as well as betasatellite universal primers ß01 (5'-GGTACCACTACGCTACGCAGCAGCC-3') and ß02 (5'-GGTACCTACCCTCCCAGGGGTACAC-3') (Zhou et al.,2003). The full length CLCuMuV DNA-A in spinach spans 2737 nt (GenBank accession number: MW561346), while CLCuMuB in spinach covers 1343 nt (GenBank accession number: MW561347). The 2737 nt full length CLCuMuV DNA-A and the associated 1343 nt CLCuMuB genome sequences generated from spinach samples were deposited in the GenBank with accession numbers MW561346 and MW561347. The MW561346 shared 99.5% sequence identity with CLCuMV GD37 from Hibiscus rosasinensis. Whereas the MW561347 shared 98.4% sequence identity with CLCuMuB GD37ß. Therefore, we used infectious clones of CLCuMuV (GD37) and CLCuMuB (GD37ß), provided by Xueping Zhou (Gu et al., 2015), to inoculate healthy spinach via Agrobacterium. Infected plants showed typical symptoms 14 days post-inoculation, including leaf edge curling, shrinkage, and vein enlargement, which is consistent with symptoms observed in infected spinach plants in the field (Fig. 1C). The expected 570 bp fragments were amplified in the uninoculated upper leaves of spinach showing symptoms, while not detected in the control spinach, indicating that the symptoms on spinach plants were caused by CLCuMuV associated with CLCuMuB. The transmission efficiency of CLCuMuV to spinach was assessed using two whitefly species, MEAM1 and MED, which were fed on h. rosasinensis infected with CLCuMuV. To compare the transmission efficiency between the two species, 14 spinach plants were inoculated with MEAM1, and 11 spinach plants were inoculated with MED. Each spinach plant was inoculated by releasing 10 whiteflies. After 30 days, MEAM1 transmitted CLCuMuV to spinach inducing typical symptoms (Fig. 1D), with a 78.57% (11/14) transmission efficiency. Similarly, MED also transmitted CLCuMuV to spinach but with a lower efficiency of 54.54% (6/11). These results suggested both MEAM1 and MED could transmit CLCuMuV to spinach, with MEAM1 demonstrating higher efficiency than MED. To the best of our knowledge, this study marks the first report of CLCuMuV infecting spinach, indicating an expanded host range for the virus.

6.
Insects ; 15(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39336625

RESUMEN

Bemisia tabaci (Gennadius) is as a major pest of vegetable crops in Cameroon. These sap-sucking insects are the main vector of many viruses infecting plants, and several cryptic species have developed resistance against insecticides. Nevertheless, there is very little information about whitefly species on vegetable crops and the endosymbionts that infect them in Cameroon. Here, we investigated the genetic diversity of whiteflies and their frequency of infection by endosymbionts in Cameroon. Ninety-two whitefly samples were collected and characterized using mitochondrial cytochrome oxidase I (mtCOI) markers and Kompetitive Allele Specific PCR (KASP). The analysis of mtCOI sequences of whiteflies indicated the presence of six cryptic species (mitotypes) of Bemisia tabaci, and two distinct clades of Bemisia afer and Trialeurodes vaporariorum. Bemisia tabaci mitotypes identified included: MED on tomato, pepper, okra, and melon; and SSA1-SG1, SSA1-SG2, SSA1-SG5, SSA3, and SSA4 on cassava. The MED mitotype predominated in all regions on the solanaceous crops, suggesting that MED is probably the main phytovirus vector in Cameroonian vegetable cropping systems. The more diverse cassava-colonizing B. tabaci were split into three haplogroups (SNP-based grouping) including SSA-WA, SSA4, and SSA-ECA using KASP genotyping. This is the first time that SSA-ECA has been reported in Cameroon. This haplogroup is predominant in regions currently affected by the severe cassava mosaic virus disease (CMD) and cassava brown streak virus disease (CBSD) pandemics. Three endosymbionts including Arsenophonus, Rickettsia, and Wolbachia were present in female whiteflies tested in this study with varying frequency. Arsenophonus, which has been shown to influence the adaptability of whiteflies, was more frequent in the MED mitotype (75%). Cardinium and Hamiltonella were absent in all whitefly samples. These findings add to the knowledge on the diversity of whiteflies and their associated endosymbionts, which, when combined, influence virus epidemics and responses to whitefly control measures, especially insecticides.

7.
Plant Cell Environ ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39262218

RESUMEN

Nicotiana benthamiana, a widely acknowledged laboratory model plant for molecular studies, exhibits lethality to certain insect pests and can serve as a dead-end trap plant for pest control in the field. However, the underlying mechanism of N. benthamiana's resistance against insects remains unknown. Here, we elucidate that the lethal effect of N. benthamiana on the whitefly Bemisia tabaci arises from the toxic glandular trichome exudates. By comparing the metabolite profiles of trichome exudates, we found that 51 metabolites, including five O-acyl sugars (O-AS) with medium-chain acyl moieties, were highly accumulated in N. benthamiana. Silencing of two O-AS biosynthesis genes, branched-chain keto acid dehydrogenase (BCKD) and Isopropyl malate synthase-C (IPMS-C), significantly reduced the O-AS levels in N. benthamiana and its resistance against whiteflies. Additionally, we demonstrated that the higher expression levels of BCKD and IPMS-C in the trichomes of N. benthamiana contribute to O-AS synthesis and consequently enhance whitefly resistance. Furthermore, overexpression of NbBCKD and NbIPMS-C genes in the cultivated tobacco Nicotiana tabacum enhanced its resistance to whiteflies. Our study revealed the metabolic and molecular mechanisms underlying the lethal effect of N. benthamiana on whiteflies and presents a promising avenue for improving whitefly resistance.

8.
Front Vet Sci ; 11: 1417590, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263677

RESUMEN

Cotton leaf curl Multan virus (CLCuMuV), a serious viral disease causative agent in cotton plants in South Asia, is transmitted by the Bemisia tabaci cryptic species complex in a persistent circulative manner. A previous study indicated that Asia II-7 whiteflies could transmit CLCuMuV, while Mediterranean (MED) whiteflies failed to transmit CLCuMuV. However, little is known about the genes involved in this process. In this study, Asia II-7 and MED B. tabaci were utilized to determine transcriptomic responses after 48 h of acquisition access periods (AAPs). Result of Illumina sequencing revealed that, 14,213 and 8,986 differentially expressed genes (DEGs) were identified. Furthermore, DEGs related to the immune system and metabolism of Asia II-7 and MED in response to CLCuMuV-infected plants were identified and analyzed using Gene Ontologies (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and the number of related DEGs in MED was lower than that of Asia II-7. The most abundant groups of DEGs between both viruliferous and aviruliferous whitefly species were the zf-C2H2 family of transcription factors (TFs). Notably, in comparison to viruliferous MED, Asia II-7 exhibited more DEGs related to cathepsin biosynthesis. Overall, this study provides the basic information for investigating the molecular mechanism of how begomoviruses affect B. tabaci metabolism and immune response either as vector cryptic species or non-vector species.

9.
Pest Manag Sci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258464

RESUMEN

BACKGROUND: The whitefly Bemisia tabaci is one of the world's foremost agricultural pests. Recently, we found that a wild relative of tobacco (Nicotiana benthamiana) demonstrates remarkable attractiveness and nearly 100% lethality towards whiteflies. Therefore, it can act as a dead-end trap crop for whitefly control in the field. However, the underlying mechanism of the significant attractiveness of N. benthamiana towards whiteflies is unclear. RESULTS: Binary-choice assays and olfactory experiments showed that compared to common tobacco (N. tabacum), the volatile of N. benthamiana has a greater attraction to whiteflies. Then we analyzed and compared volatiles from these two Nicotiana species by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). We identified 16 chemical compounds that are more abundant in N. benthamiana than in N. tabacum. Seven compounds were further tested with olfactometer assays and we found that, among them, undecane strongly attracted whiteflies. Further experiments revealed that even 0.005 µg mL-1 undecane is attractive to whiteflies. We also silenced the genes that may influence the biosynthesis of undecane and found the production of undecane decreased after silencing NbCER3, and that N. benthamiana plants with less undecane lost their attraction to whiteflies. In addition, we found that applying 0.005 µg mL-1 undecane on yellow sticky traps can increase the number of stuck insects on the traps by ≈40%. CONCLUSION: Undecane from the volatile of N. benthamiana is a critical chemical signal that attracts whiteflies and NbCER3 involved in the biosynthesis of undecane. Undecane may be used to improve the efficiency of yellow sticky traps for whitefly control. © 2024 Society of Chemical Industry.

10.
Int J Biol Macromol ; 279(Pt 1): 135140, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39216571

RESUMEN

Genome wide analysis identified 14 OBPs in B. tabaci Asia II-1, of which six are new to science. Phylogenetic analysis traced their diversity and evolutionary lineage among Hemipteran insects. Comparative analysis reclassified the OBP gene families among B. tabaci cryptic species: Asia I, II-1, MEAM1, and MED. The 14 OBPs were clustered on four chromosomes of B. tabaci. RT-qPCR showed high expression of OBP3 and 8 across all body tissues and OBP10 in the abdomen. Molecular docking showed that OBP 3 and 10 had high affinity bonding with different candidate ligands, with binding energies ranging from -5.0 to -7.7 kcal/mol. Competitive fluorescence binding assays revealed that ß-caryophyllene and limonene had high binding affinities for OBP3 and 10, with their IC50 values ranging from 9.16 to 14 µmol·L-1 and KD values around 7 to 9 µmol·L-1. Behavioural assays revealed that ß-caryophyllene and carvacrol were attractants, ß-ocimene and limonene were repellents, and γ-terpinene and ß-ocimene were oviposition deterrents to B. tabaci. Functional validation by RNAi demonstrated that OBP3 and OBP10 modulated host recognition of B. tabaci. This study expands our understanding of the genomic landscape of OBPs in B. tabaci, offering scope for developing novel pest control strategies.


Asunto(s)
Hemípteros , Proteínas de Insectos , Filogenia , Receptores Odorantes , Sesquiterpenos , Animales , Hemípteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Proteínas de Insectos/genética , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Sesquiterpenos/farmacología , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Sesquiterpenos Policíclicos/farmacología , Sesquiterpenos Policíclicos/química , Cimenos/farmacología , Cimenos/química , Simulación del Acoplamiento Molecular , Monoterpenos/farmacología , Monoterpenos/metabolismo , Monoterpenos/química , Limoneno/farmacología , Limoneno/química , Limoneno/metabolismo , Monoterpenos Acíclicos/metabolismo , Monoterpenos Acíclicos/farmacología , Monoterpenos Acíclicos/química , Ciclohexenos/metabolismo , Ciclohexenos/farmacología , Ciclohexenos/química , Terpenos/metabolismo , Terpenos/química , Terpenos/farmacología , Genoma de los Insectos , Repelentes de Insectos/farmacología , Repelentes de Insectos/química , Genómica/métodos , Monoterpenos Ciclohexánicos , Alquenos
11.
J Exp Bot ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126232

RESUMEN

Plant viruses exist in a broader ecological community, with key components include non-vector herbivores that can impact vector abundance, behavior, and virus transmission within shared host plants. However, little is known about the effects of non-vector herbivores infestation on the virus transmission by vector insects on the neighboring plants through inter-plant airborne chemicals. In this study, we investigated how volatiles emitted from tomato plants infested with the two-spotted spider mite (Tetranychus urticae) affect the infection of Tomato yellow leaf curl virus (TYLCV) transmitted by the whitefly (Bemisia tabaci) in the neighboring plants. Exposure of neighboring tomato plants to volatiles released from T. urticae-infested tomato plants reduced subsequent herbivory as well as TYLCV transmission and infection, and JA signaling pathway was essential for generation of the inter-plant defense signals. We also demonstrated that (E)-ß-Ocimene and MeSA were two volatiles induced by T. urticae that synergistically attenuated TYLCV transmission and infection in tomato. Thus, our findings suggest that plant-plant communication via volatiles likely represents a widespread defensive mechanism that substantially contributes to plant fitness. Understanding such phenomena may help us to predict the occurrence and epidemic of multiple herbivores and viruses in the agroecosystem, ultimately to manage pest and virus outbreaks.

12.
Sci Rep ; 14(1): 18267, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107360

RESUMEN

In many insects the surface of the eye is nanostructured by arrays of protuberances termed ommatidial gratings which provide the cuticle with anti-reflective, anti-wetting and self-cleaning properties. The hypothesised anti-contamination role of the gratings against dust and pollen results from theoretical predictions on grating geometry and experiments on synthetic replicas of ommatidia surfaces but has not yet been proven in an animal. Whiteflies are biological test beds for anti-contamination surfaces because they deliberately distribute wax particles extruded from abdominal plates over their entire bodies. The numerous particles protect the animal against water evaporation and radiation, but may severely impair vision. Using scanning electron microscopy (SEM) and CryoSEM, we here show that the cornea of whiteflies exhibits ~ 220 nm wide mesh-like structures forming hexagonal gratings with thin ~ 40 nm connecting walls. Quantitative measurements of wax particles on the eye show that the nanostructures reduce particle contamination by more than ~ 96% compared to other areas of the cuticle. Altogether, our study is the first description of a predicted optimized grating geometry for anti-contamination in an arthropod. The findings serve as evidence of the high effectiveness of nanostructured surfaces for reducing contact area and thus adhesion forces between biological surfaces and contaminating particles.


Asunto(s)
Hemípteros , Nanoestructuras , Animales , Nanoestructuras/química , Hemípteros/fisiología , Ojo , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Ceras/química
13.
Pest Manag Sci ; 80(11): 5684-5693, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38984846

RESUMEN

BACKGROUND: Elucidating fitness cost associated with field-evolved insect resistance to insecticide is of particular importance to current sustainable pest control. The global pest whitefly Bemisia tabaci has developed resistance to many members of neonicotinoids, but little is known about whitefly resistance to neonicotinoid nitenpyram and its associated fitness cost. Using insecticide bioassay and life-table approach, this study aims to investigate nitenpyram resistance status in field-collected whitefly populations, and to explore whether such resistance is accompanied by a fitness cost. RESULTS: The bioassay results revealed that 14 of 29 whitefly populations displayed moderate to extremely high resistance to nitenpyram, demonstrating a widespread field-evolved resistance to nitenpyram. This field-evolved resistance in the whitefly has increased gradually over the past 3 years from 2021 to 2023. Further life-table study showed that two resistant whitefly populations exhibited longer developmental time, shorter lifespans of adult, and lower fecundity compared with the most susceptible population. The relative fitness cost of the two resistant populations was calculated as 0.69 and 0.56 by using net productive rate R0, which suggests that nitenpyram resistance comes with fitness cost in the whitefly, especially on reproduction. CONCLUSION: Overall, these results represent field-evolved high resistance to nitenpyram in the whitefly. The existing fitness costs associated with nitenpyram resistance are helpful to propose a suitable strategy for sustainable control of whiteflies by rotation or mixture of insecticide with different modes of action. © 2024 Society of Chemical Industry.


Asunto(s)
Aptitud Genética , Hemípteros , Resistencia a los Insecticidas , Insecticidas , Neonicotinoides , Animales , Hemípteros/efectos de los fármacos , Hemípteros/crecimiento & desarrollo , Hemípteros/fisiología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Neonicotinoides/farmacología , Femenino
14.
Mol Biol Rep ; 51(1): 861, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39068620

RESUMEN

BACKGROUND: Bemisia tabaci, a significant agricultural pest in Asia, contains distinct genetic groups, Asia-1 and Asia II-1. Understanding its reproductive biology, particularly the role of ejaculatory bulb proteins (EBPs) in mating, is crucial. However, EBPs in B. tabaci were not well characterised until this study. METHODS AND RESULTS: The EBPs have been characterised in the Asia-1 and Asia II-1 genetic groups of the whitefly B. tabaci, prevalent in Asia. The transcriptomic analysis yielded over 40,000,000 and 30,000,000 annotated transcripts, respectively, from Asia II-1 and Asia-1. Differential gene expression revealed the presence of 270 upregulated and 198 downregulated genes, with significant differences between these two genetic groups. Orphan genes (1992 numbers) were identified in both genetic groups. We report, for the first time, full-length sequences of EBP genes from B. tabaci. The 10 EBPs each deduced in B. tabaci Asia-1 and Asia II-1 are structurally akin to chemosensory proteins having four conserved cysteine residues. Additionally, we did domain analysis, protein structure prediction, mapping of these EBPs in the chromosomes of B. tabaci, and phylogenetic analysis to track their evolutionary lineage. We have specifically demonstrated the transfer of EBPs from males to females during mating using qPCR and further validated the transfer of EBPs through RNAi. Specifically, we targeted the highly expressed EBPs (EBP-3, 7, and 8 in BtAsia1; EBP-8, 9, and 10 in BtAsia II-1) through feeding bioassays of dsRNAs. Tracking by qPCR revealed that the females, when mated with dsRNA-treated males, did not show expression of the specific EBP, suggesting that the silencing of these genes in males hinders the transfer of EBP to females during mating. CONCLUSION: Our findings provide novel insights into the genomic contours of EBPs in B. tabaci and underscore the potential of RNAi-based strategies for pest management by disrupting the reproductive processes.


Asunto(s)
Hemípteros , Proteínas de Insectos , Interferencia de ARN , Animales , Hemípteros/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Femenino , Filogenia , Reproducción/genética , Perfilación de la Expresión Génica/métodos , Conducta Sexual Animal/fisiología , Asia , Transcriptoma/genética
15.
Pestic Biochem Physiol ; 203: 105987, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084790

RESUMEN

Bemisia tabaci is one of the most destructive agricultural insect pests around the world, and it has developed high levels of resistance to most pesticides. Dimpropyridaz, a novel insecticide developed by BASF, displays excellent activity against piercing-sucking insect pests. In this study, baseline of susceptibility showed all tested field populations of B. tabaci are susceptible to dimpropyridaz. After continuous selection with dimpropyridaz in the lab, a B. tabaci strain (F12) developed 2.2-fold higher level of resistance compared with a susceptible MED-S strain, and the realized heritability (h2) was estimated as 0.0518. The F12 strain displayed little cross-resistance to afidopyropen, cyantraniliprole, sulfoxaflor, or abamectin, and significantly increased activity of cytochrome P450 monooxygenase (P450). The fitness cost of dimpropyridaz resistance was evident in F12 strain, which had a relative fitness of 0.95 and significantly lower fecundity per female compared with MED-S strain. Taken together, B. tabaci displays high susceptibility to dimpropyridaz in the field, and low risk of developing resistance to dimpropyridaz under successive selection pressure. Little cross-resistance to popular insecticides was found, and fitness cost associated dimpropyridaz resistance was observed. Higher activity of cytochrome P450 in the F12 strain, may be involved in the process of detoxifying dimpropyridaz in whitefly.


Asunto(s)
Hemípteros , Resistencia a los Insecticidas , Insecticidas , Piridazinas , Animales , Hemípteros/efectos de los fármacos , Hemípteros/genética , Insecticidas/farmacología , Resistencia a los Insecticidas/genética , Piridazinas/farmacología , China , Pirazoles/farmacología , Femenino , Medición de Riesgo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
16.
Sci Rep ; 14(1): 15046, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951601

RESUMEN

The cotton whitefly, Bemisia tabaci, is considered as a species complex with 46 cryptic species, with Asia II-1 being predominant in Asia. This study addresses a significant knowledge gap in the characterization of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Asia II-1. We explored the expression patterns of OBPs and CSPs throughout their developmental stages and compared the motif patterns of these proteins. Significant differences in expression patterns were observed for the 14 OBPs and 14 CSPs of B. tabaci Asia II-1, with OBP8 and CSP4 showing higher expression across the developmental stages. Phylogenetic analysis reveals that OBP8 and CSP4 form distinct clades, with OBP8 appearing to be an ancestral gene, giving rise to the evolution of other odorant-binding proteins in B. tabaci. The genomic distribution of OBPs and CSPs highlights gene clustering on the chromosomes, suggesting functional conservation and evolutionary events following the birth-and-death model. Molecular docking studies indicate strong binding affinities of OBP8 and CSP4 with various odour compounds like ß-caryophyllene, α-pinene, ß-pinene and limonene, reinforcing their roles in host recognition and reproductive functions. This study elaborates on our understanding of the putative roles of different OBPs and CSPs in B. tabaci Asia II-1, hitherto unexplored. The dynamics of the expression of OBPs and CSPs and their interactions with odour compounds offer scope for developing innovative methods for controlling this global invasive pest.


Asunto(s)
Hemípteros , Proteínas de Insectos , Filogenia , Receptores Odorantes , Animales , Hemípteros/metabolismo , Hemípteros/genética , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Receptores Odorantes/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Regulación del Desarrollo de la Expresión Génica , Simulación del Acoplamiento Molecular , Sesquiterpenos Policíclicos/metabolismo , Limoneno/metabolismo , Sesquiterpenos/metabolismo
17.
Insects ; 15(6)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38921114

RESUMEN

Bemisia tabaci (Gennadius) is one of the most important invasive species in China, with strong insecticide resistance and thermotolerance. In this study, we investigated the effects of elevated temperature on the tolerance of B. tabaci MEMA1 to abamectin (AB) and thianethixam (TH) insecticides. We firstly cloned two new CYP450 genes from B. tabaci MEAM1, including one CYP6 family gene (BtCYP6k1) and one CYP305 family gene (BtCYP305a1). The expression patterns of the two BtCYP450 genes were compared in response to high-temperature stress and insecticide exposure, and RNAi was then used to demonstrate the role that these two genes play in insecticide tolerance. The results showed that expression of the two BtCYP450 genes could be induced by exposure to elevated temperature or insecticide, but this gene expression could be inhibited to a certain extent when insects were exposed to the combined effects of high temperature and insecticide treatment. For AB treatment, the expression of the two BtCYP450 genes reached the lowest level when insects were exposed to a temperature of 41 °C and treated with AB (combined effects of temperature and insecticide). In contrast, TH treatment showed a general decrease in the expression of the two BtCYP450 genes with exposure to elevated temperatures. These findings suggest that insecticide tolerance in B. tabaci MEAM1 could be mediated by high temperatures. This study provides a prospective method for the more effective application of insecticides for the control of B. tabaci in the field.

18.
Insects ; 15(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38921151

RESUMEN

Synthetic insecticides used to control Bemisia tabaci include organophosphorus, pyrethroids, insect growth regulators, nicotinoids, and neonicotinoids. Among these, neonicotinoids have been used continuously, which has led to the emergence of high-level resistance to this class of chemical insecticides in the whitefly, making whitefly management difficult. The adipokinetic hormone gene (AKH) and reactive oxygen species (ROS) play roles in the development of insect resistance. Therefore, the roles of AKH and ROS in imidacloprid resistance in Bemisia tabaci Mediterranean (MED; formerly biotype Q) were evaluated in this study. The expression level of AKH in resistant B. tabaci MED was significantly lower than that in sensitive B. tabaci (MED) (p < 0.05). AKH expression showed a decreasing trend. After AKH silencing by RNAi, we found that ROS levels as well as the expression levels of the resistance gene CYP6CM1 and its upstream regulatory factors CREB, ERK, and P38 increased significantly (p < 0.05); additionally, whitefly resistance to imidacloprid increased and mortality decreased (p < 0.001). These results suggest that AKH regulates the expression of resistance genes via ROS in Bemisia tabaci.

19.
Insects ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921153

RESUMEN

The sweetpotato whitefly, Bemisia tabaci MEAM1, is a pest known to significantly impact tomato development and yields through direct damage and virus transmission. To manage this pest, the current study compared the effectiveness of various insecticide rotations. Field trials included rotations involving synthetic insecticides, biochemicals, and microbial agents, applied according to their highest labeled concentrations. The results indicated that while standard synthetic insecticides consistently reduced whitefly egg and nymph counts significantly, microbial biopesticide rotations also achieved reductions, although less consistently. This study demonstrated that while traditional chemical treatments remain highly effective, microbial biopesticides containing Beauveria bassiana and Cordyceps javanica present a viable alternative to manage MEAM1 in tomato fields. The data generated in this study provided baseline information for further investigations to determine the potential for optimizing integrated pest management (IPM) and insecticide resistance management (IRM) strategies by incorporating microbial biopesticides in rotations with a variety of modes of action to sustainably manage B. tabaci MEAM1 populations in agricultural settings.

20.
Plants (Basel) ; 13(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931079

RESUMEN

In tropical countries, combating leaf curl disease in hot peppers has become important in improvement programs. Leaf curl disease is caused by whitefly (Bemisia tabaci) transmitted begomoviruses, which mainly include chilli leaf curl virus (ChiLCV). However, multiple begomoviruses have also been found to be associated with this disease. The Capsicum annuum line, DLS-Sel-10, was found to be a tolerant source against this disease during field screening. In this study, we characterized the resistance of DLS-sel-10 against chilli leaf curl virus (ChiLCV) in comparison to the susceptible cultivar Phule Mukta (PM), focusing on the level, stage, and nature of resistance. Comprehensive investigations involved screening of DLS-Sel-10 against the whitefly vector ChiLCV. The putative tolerant line displayed reduced virus infection at the seedling stage, with increasing resistance during vegetative, flowering, and fruiting stages. Both DLS-Sel-10 and PM could be infected with ChiLCV, although DLS-Sel-10 remained symptomless. Insect feeding assays revealed DLS-Sel-10 as a less preferred host for whiteflies compared to PM. In conclusion, DLS-Sel-10 demonstrated tolerance not only to ChiLCV but also served as an unfavorable host for the whitefly vector. The study highlighted an age-dependent increase in tolerance within DLS-Sel-10, showcasing its potential for effective leaf curl disease management in chilli.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA