Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
J Appl Microbiol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384568

RESUMEN

AIMS: Hypogeal environments with Cultural Heritage interest pose a real challenge for their preservation and conservation. The ancient Etruscan Necropolis of Tarquinia, Italy, consists of 200 tombs decorated with extraordinary mural paintings, of great artistic and historical value. Since the beginning of the restoration campaign in 2016, a regular microbiological survey has been performed in the Tomba degli Scudi. The aim of this study was to investigate the nature of an expansion of black spots on the pictorial layers recently observed. METHODS AND RESULTS: To determine the origin of the black spots in the atrium chamber of the Tomba degli Scudi, the fungal community was sampled using various techniques: cellulose discs, swabs and nylon membranes and investigated by a multi-analytical approach. The obtained results suggest that the identified fungal strains (e.g. Gliomastix murorum and Pseudogymnoascus pannorum) are common to many subterranean environments around the world, such as Lascaux cave. CONCLUSIONS: The continuous and long-term monitoring made it possible to detect alterations at an early stage and assess the harmfulness of different fungal strains. This work is a demonstration of the effectiveness of prevention and monitoring actions within these fragile and valuable environments.

2.
J Microbiol Methods ; : 107054, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395725

RESUMEN

The transfer of biocide and antibiotic resistance genes by mobile genetic elements is the most common mechanism for rapidly acquiring and spreading resistance among bacteria. The qacEΔ1 gene confers the resistance to quaternary ammonium compounds (QACs). It has also been considered a genetic marker for the presence of class 1 integrons associated with multidrug-resistant (MDR) phenotypes in Gram-negative bacteria. In this study, a TaqMan real-time PCR assay was developed to detect the qacEΔ1 gene in Gram-negative bacteria. The assay has a detection limit of 80 copies of the qacEΔ1 gene per reaction. No false-positive or false-negative results have been observed. Simultaneous amplification and detection of the 16S rRNA gene is performed as an endogenous internal amplification control (IAC). The TaqMan real-time PCR assay developed is a rapid, sensitive, and specific method that could be used to monitor resistance to QACs, the spread of class 1 integrons, and the prediction of associated MDR phenotypes in Gram-negative bacteria.

3.
Evol Appl ; 17(10): e70017, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39399585

RESUMEN

Biocides are used to control microorganisms across different applications, but emerging resistance may pose risks for those applications. Resistance to biocides has commonly been studied using adaptive laboratory evolution (ALE) experiments with growth at subinhibitory concentrations linked to serial subculturing. It has been shown recently that Escherichia coli adapts to repeated lethal stress imposed by the biocide benzalkonium chloride (BAC) by increased survival (i.e., tolerance) and not by evolving the ability to grow at increased concentrations (i.e., resistance). Here, we investigate the contributions of evolution for tolerance as opposed to resistance for the outcome of ALE experiments with E. coli exposed to BAC. We find that BAC concentrations close to the half maximal effective concentration (EC50, 4.36 µg mL-1) show initial killing (~40%) before the population resumes growth. This indicates that cells face a two-fold selection pressure: for increased survival and for increased growth. To disentangle the effects of both selection pressures, we conducted two ALE experiments: (i) one with initial killing and continued stress close to the EC50 during growth and (ii) another with initial killing and no stress during growth. Phenotypic characterization of adapted populations showed that growth at higher BAC concentrations was only selected for when BAC was present during growth. Whole genome sequencing revealed distinct differences in mutated genes across treatments. Treatments selecting for survival-only led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ), while treatments selecting for growth and survival led to mutations in genes related to stress response (hslO and tufA). Our results demonstrate that serial subculture ALE experiments with an antimicrobial at subinhibitory concentrations can select for increased growth and survival. This finding has implications for the design of ALE experiments to assess resistance risks of antimicrobials in different scenarios such as disinfection, preservation, and environmental pollution.

4.
Food Chem Toxicol ; : 115054, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396698

RESUMEN

Biocides are used as preservatives in various household products, and 1,2-benzisothiazolin-3-one (BIT) is one of the popular chemicals. Therefore, BIT is highly likely to be exposed to human skin, necessitating dermal toxicity evaluation. In this study, we aimed to investigate dermal toxicity, eyes and skin irritation, and skin sensitization of BIT. All studies were conducted according to the Organisation for Economic Co-operation and Development testing guidelines. In acute dermal toxicity using rats, no treatment-related responses were observed at the highest dose (2,000 mg/kg). A 28-day repeated dermal toxicity study at 1, 4, and 12 mg/kg/day showed transient local skin irritation lesions, including erythema, exfoliation, and crust formation. Based on no systemic effects, the no observed adverse effect level (NOAEL) of BIT of the 28-day repeated dermal toxicity study was determined to be 12 mg/kg/day. Eye and skin irritation tests showed that BIT is a strong irritant and corrosive to the eyes and a mild irritant to the skin. However, BIT showed no skin sensitization reactions in a local lymph node assay. These dermal toxicity studies can provide valuable information for the risk assessment of BIT.

5.
Appl Environ Microbiol ; : e0066624, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320084

RESUMEN

The study was conducted to inform risk assessments concerning microbial exposure to quaternary ammonium biocides (QUATs) by investigating their effects on 10 microbial strains of hygiene relevance. Biocides were divided into three categories: simple aqueous solutions, biocide mixtures, and formulated biocides. Organisms were grown in the presence of biocides for 10 generations and then subsequently for another 10 generations in biocide-free media. Control organisms were passaged 20 times in biocide-free media. Strains were then assessed for biocide and antibiotic susceptibility, changes in growth dynamics, and single nucleotide polymorphisms (SNPs). Biocide mixtures demonstrated greater antimicrobial potency than singular and formulated biocides. Susceptibility changes of under twofold were observed for all biocides tested. Susceptibility decreased significantly for organisms passaged with singular biocides (1.29- to 4.35-fold) and biocide mixtures (1.4- to 1.5-fold), but not for formulated biocides (1.3- to 1.84-fold) compared to controls. Antibiotic susceptibility both increased and decreased in passaged organisms, with heightened susceptibility occurring more frequently in the singular biocide group. Changes in susceptibility and growth dynamics were similar in the passaged and unexposed controls for fitness measures of adapted bacteria; there were no significant differences between biocide groups, but significantly lower generation and doubling times in organisms exposed to singular biocides. Similar frequencies in SNPs occurred for the three biocide groups and unexposed controls. While some adaptations occurred, particularly with singular biocides, the impact on antibiotic resistance and genomic mutations was limited. These findings suggest that the use of formulated QUATs may pose a comparatively lower risk for antimicrobial resistance.IMPORTANCEBiocides are used globally to control microbial growth and effective assessment of the risks and benefits of their use is therefore a high priority. Much of the data used to assess risk has been based on sub-lethal exposure of bacteria to singular biocides in simple aqueous solutions. This work builds on limited prior realism-based studies to demonstrate enhanced potency in biocidal mixtures; the mitigation of resistance selection by formulations and inconsistent cross-resistance effects with both increases and decreases in susceptibility for a wide range of antibiotics. These data can be used to better inform risk assessments of biocide deployment.

6.
Microorganisms ; 12(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39338566

RESUMEN

During the COVID-19 pandemic, the surge in disinfectant use emphasised their pivotal role in infection control. While the majority of antimicrobial resistance research focuses on antibiotics, resistance to biocides, which are present in disinfectants and sanitisers, is escalating. Serratia sp. HRI is a highly resistant isolate, and through the study of this organism, the molecular mechanisms of resistance may be uncovered. Serratia sp. HRI was treated with the disinfectant benzalkonium chloride in preparation for RNA sequencing. Through mining of the RNA-Seq differential expression data, an uncharacterised Major Facilitator Superfamily (MFS) efflux pump gene was found to be up-regulated at least four-fold at four different time points of exposure. Real-time PCR revealed this uncharacterised MFS efflux gene was up-regulated after exposure to benzalkonium chloride and two additional disinfectants, didecyldimethylammonium chloride (DDAC) and VirukillTM. Additionally, expression of this gene was found to be higher at 20 min versus 90 min of exposure, indicating that the up-regulation of this gene is an initial response to biocide treatment that decreases over time. This suggests that MFS efflux pumps may be an initial survival mechanism for microorganisms, allowing time for longer-term resistance mechanisms. This work puts forward a novel biocide resistance gene that could have a major impact on biocide susceptibility and resistance.

7.
Chemosphere ; 364: 143099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39146988

RESUMEN

Biocides are present in personal care (including preservatives or antibacterials), pest control, and disinfectant products (including non-agricultural insecticides, fungicides, and disinfectants), and their long-term exposure may induce adverse health effects in humans. Therefore, in this study, we assessed the exposure levels and major exposure predictors of biocides among nationally representative Korean adults. The target group included adults (≥19 years) participating in the Korean National Environmental Health Survey (KoNEHS) 2015-2020. We employed survey-weighted multiple regression analysis and conditional inference trees analysis to assess the associations between demographic characteristics, behavioral sources (including personal care product use, pesticide use, and dietary patterns), and urinary levels of phenol (triclosan [TCS]), parabens (methyl paraben [MP], ethyl paraben [EP], propyl paraben [PP], and butyl paraben [BP]), and the pyrethroid insecticide metabolite (3-phenoxybenzoic acid [3-PBA]). Urinary EP, BP, and 3-PBA levels were higher in South Korean adults compared with those in Western countries. Major exposure predictors for MP, EP, and PP included the use of personal care products such as sunscreen, makeup, and hair care products in KoNEHS 2018-2020. Major exposure predictors for TCS and BP were vegetable consumption, and those for 3-PBA were mosquitocide use during summer in KoNEHS 2018-2020. However, these predictors were not observed in KoNEHS 2015-2017. Collectively, our findings suggest that biocide exposure predictors vary according to changes in product use and diet habits of individuals. Therefore, developing strategies to mitigate biocide exposure based on the demographic and behavioral characteristics of the general population is imperative.


Asunto(s)
Desinfectantes , Exposición a Riesgos Ambientales , Parabenos , República de Corea , Humanos , Desinfectantes/análisis , Adulto , Femenino , Persona de Mediana Edad , Exposición a Riesgos Ambientales/estadística & datos numéricos , Masculino , Parabenos/análisis , Adulto Joven , Triclosán/orina , Triclosán/análisis , Anciano , Plaguicidas/análisis , Plaguicidas/orina , Benzoatos
8.
Front Vet Sci ; 11: 1436965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183753

RESUMEN

European hedgehogs (Erinaceus europaeus) inhabit most of Denmark, except for a few smaller islands. Research from other European countries has shown that the hedgehog populations are in decline. The exposure to chemicals might contribute to this development, although their role is currently unknown. Our research studied the occurrence of 19 selected pesticides in the Danish hedgehog population as well as factors potentially explaining the levels of chemicals detected. We analysed 115 liver samples obtained from dead hedgehogs in 2016 for seven rodenticides, four insecticides and eight herbicides commonly used in Denmark at the time of sampling, applying a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method. Detection frequencies varied between 0.9% for fluroxypyr and trans-permethrin and 79% for bromadiolone. Rodenticides, insecticides and herbicides were detected in 84, 43, and 50% of the samples, respectively. The compounds most frequently detected included the insecticide imidacloprid (35%), the herbicide metamitron (29%) and the rodenticide bromadiolone (79%). Individual concentrations varied between non-detected to >2 µg/g. A total of 79% of the 115 hedgehogs contained more than one detectable pesticide, with up to nine of the 19 compounds detected in one individual. The detection frequencies were found to differ significantly between the Eastern and Western part of Denmark for difenacoum, difethialone and imidacloprid. However, no associations were found with sex, age, habitat type or the prevalence of mecC-MRSA and endoparasites in the hedgehogs tested. Whether or not the pesticide levels detected carry a health risk for the hedgehogs remains unknown as no adverse effect levels have yet been established for European hedgehogs for single compounds or pesticide mixtures.

10.
Biofouling ; 40(8): 499-513, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39108059

RESUMEN

The bacterial community from a cooling water system was investigated through culture-dependent and independent strategies, and the responses of planktonic and sessile bacteria (grown in glass slides and stainless-steel coupons) to antimicrobials of industrial and clinical use were assessed. The morphotypes with higher biofilm-forming potential were Pseudoxanthomonas sp., Rheinheimera sp., Aeromonas sp. and Staphylococcus sp., and the first also exhibited lower susceptibility to all antibiotics and biocides tested. 16S rRNA high throughput sequencing indicated that Pseudomonadota (77.1% on average, sd 11.1%), Bacteroidota (8.4, sd 5.7%), and Planctomycetota (3.0, sd 1.3%) were the most abundant phyla. KEGG orthologs associated with antibiotics and biocide resistance were abundant in all samples. Although the minimum inhibitory and bactericidal concentrations were generally higher for biofilms, morphotypes in planktonic form also showed high levels of resistance, which could be associated with biofilm cells passing into the planktonic phase. Overall, monochloramine was the most effective biocide.


Asunto(s)
Bacterias , Biopelículas , Microbiota , Plancton , Biopelículas/efectos de los fármacos , Plancton/efectos de los fármacos , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/genética , ARN Ribosómico 16S/genética , Desinfectantes/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Microbiología del Agua
11.
Food Res Int ; 193: 114842, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160043

RESUMEN

Traditionally, surveillance programs for food products and food processing environments have focused on targeted pathogens and resistance genes. Recent advances in high throughput sequencing allow for more comprehensive and untargeted monitoring. This study assessed the microbiome and resistome in a poultry burger processing line using culturing techniques and whole metagenomic sequencing (WMS). Samples included meat, burgers, and expired burgers, and different work surfaces. Microbiome analysis revealed spoilage microorganisms as the main microbiota, with substantial shifts observed during the shelf-life period. Core microbiota of meat and burgers included Pseudomonas spp., Psychrobacter spp., Shewanella spp. and Brochothrix spp., while expired burgers were dominated by Latilactobacillus spp. and Leuconostoc spp. Cleaning and disinfection (C&D) procedures altered the microbial composition of work surfaces, which still harbored Hafnia spp. and Acinetobacter spp. after C&D. Resistome analysis showed a low overall abundance of resistance genes, suggesting that effective interventions during processing may mitigate their transmission. However, biocide resistance genes were frequently found, indicating potential biofilm formation or inefficient C&D protocols. This study demonstrates the utility of combining culturing techniques and WMS for comprehensive of the microbiome and resistome characterization in food processing lines.


Asunto(s)
Bacterias , Manipulación de Alimentos , Microbiología de Alimentos , Microbiota , Animales , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Manipulación de Alimentos/métodos , Aves de Corral/microbiología , Metagenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Farmacorresistencia Bacteriana/genética , Carne/microbiología , Productos Avícolas/microbiología
12.
Crit Rev Biotechnol ; : 1-18, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198023

RESUMEN

With antibiotic resistance on the rise, there is an urgent need for new antibacterial drugs and products to treat or prevent infection. Many such products in current use, for example human and veterinary antibiotics and antimicrobial food preservatives, were discovered and developed from nature. Natural selection acts on all living organisms and the presence of bacterial competitors or pathogens in an environment can favor the evolution of antibacterial adaptations. In this review, we ask if vultures, blow flies and other carrion users might be a good starting point for antibacterial discovery based on the selection pressure they are under from bacterial disease. Dietary details are catalogued for over 600 of these species, bacterial pathogens associated with the diets are described, and an overview of the antibacterial defenses contributing to disease protection is given. Biotechnological applications for these defenses are then discussed, together with challenges facing developers and possible solutions. Examples include use of (a) the antimicrobial peptide (AMP) gene sarcotoxin IA to improve crop resistance to bacterial disease, (b) peptide antibiotics such as serrawettin W2 as antibacterial drug leads, (c) lectins for targeted drug delivery, (d) bioconversion-generated chitin as an antibacterial biomaterial, (e) bacteriocins as antibacterial food preservatives and (f) mutualistic microbiota bacteria as alternatives to antibiotics in animal feed. We show that carrion users encounter a diverse range of bacterial pathogens through their diets and interactions, have evolved many antibacterial defenses, and are a promising source of genes, molecules, and microbes for medical, agricultural, and food industry product development.

13.
Bull Exp Biol Med ; 177(1): 98-103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38963599

RESUMEN

We examined the effects of elevated temperatures and biocides on survivability of food isolates of Cronobacter spp. (C. sakazakii) and concomitant enterobacteriaceae obtained in microbiological control of infant nutrition products. Increased resistance of certain strains of Cronobacter, Enterobacter cloacae, and Pantoea spp. to thermal processing was revealed. Salmonella, Pantoea, and Cronobacter bacteria were least sensitive to antimicrobial action of chlorine-containing agents. The above properties varied in the strains of the same species. Specifically, only two of three examined isolates of Cronobacter spp. demonstrated lower sensitivity to heat in comparison with the enterobacterial test-cultures of other species.


Asunto(s)
Cloro , Cronobacter , Desinfectantes , Microbiología de Alimentos , Desinfectantes/farmacología , Cronobacter/efectos de los fármacos , Cronobacter/aislamiento & purificación , Cloro/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Calor , Humanos , Cronobacter sakazakii/efectos de los fármacos , Cronobacter sakazakii/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Salmonella/efectos de los fármacos , Salmonella/aislamiento & purificación , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/aislamiento & purificación
14.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986501

RESUMEN

Salmonella is a common cause of human foodborne illness, which is frequently associated with consumption of contaminated or undercooked poultry meat. Serotype Infantis is among the most common serotypes isolated from poultry meat products globally. Isolates of serotype Infantis carrying the pESI plasmid, the most dominant strain of Infantis, have been shown to exhibit oxidizer tolerance. Therefore, 16 strains of Salmonella with and without pESI carriage were investigated for susceptibility to biocide chemical processing aids approved for use in US poultry meat processing: peracetic acid (PAA), cetylpyridinium chloride (CPC), calcium hypochlorite, and sodium hypochlorite. Strains were exposed for 15 s to simulate spray application and 90 min to simulate application in an immersion chiller. All strains tested were susceptible to all concentrations of PAA, CPC, and sodium hypochlorite when applied for 90 min. When CPC, calcium hypochlorite, and sodium hypochlorite were applied for 15 s to simulate spray time, strains responded similarly to each other. However, strains responded variably to exposure to PAA. The variation was not statistically significant and appears unrelated to pESI carriage. Results highlight the necessity of testing biocide susceptibility in the presence of organic material and in relevant in situ applications.


Asunto(s)
Desinfectantes , Ácido Peracético , Plásmidos , Aves de Corral , Salmonella , Hipoclorito de Sodio , Desinfectantes/farmacología , Animales , Salmonella/efectos de los fármacos , Salmonella/genética , Ácido Peracético/farmacología , Hipoclorito de Sodio/farmacología , Plásmidos/genética , Aves de Corral/microbiología , Cetilpiridinio/farmacología , Compuestos de Calcio/farmacología , Microbiología de Alimentos , Humanos , Pruebas de Sensibilidad Microbiana , Manipulación de Alimentos
15.
Front Microbiol ; 15: 1392018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006755

RESUMEN

Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.

16.
Environ Int ; 189: 108812, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878503

RESUMEN

The linkage between biocides and antibiotic resistance has been widely suggested in laboratories and various environments. However, the action mechanism of biocides on antibiotic resistance genes (ARGs) spread is still unclear. Thus, 6 quaternary ammonium biocides (QACs) with different bonded substituents or alkyl chain lengths were selected to assess their effects on the conjugation transfer of ARGs in this study. Two conjugation models with the same donor (E. coli DH5α (RP4)) into two receptors, E. coli MG1655 and pathogenic S. sonnei SE6-1, were constructed. All QACs were found to significantly promote intra- and inter-genus conjugative transfer of ARGs, and the frequency was highly impacted by their structure and receptors. At the same environmental exposure level (4 × 10-1 mg/L), didecyl dimethyl ammonium chloride (DDAC (C10)) promoted the most frequency of conjugative transfer, while benzathine chloride (BEC) promoted the least. With the same donor, the enhanced frequency of QACs of intra-transfer is higher than inter-transfer. Then, the acquisition mechanisms of two receptors were further determined using biochemical combined with transcriptome analysis. For the recipient E. coli, the promotion of the intragenus conjugative transfer may be associated with increased cell membrane permeability, reactive oxygen species (ROS) production and proton motive force (PMF)-induced enhancement of flagellar motility. Whereas, the increase of cell membrane permeability and decreased flagellar motility due to PMF disruption but encouraged biofilm formation, maybe the main reasons for promoting intergenus conjugative transfer in the recipient S. sonnei. As one pathogenic bacterium, S. sonnei was first found to acquire ARGs by biocide exposure.


Asunto(s)
Conjugación Genética , Desinfectantes , Escherichia coli , Compuestos de Amonio Cuaternario , Desinfectantes/farmacología , Compuestos de Amonio Cuaternario/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Transferencia de Gen Horizontal
17.
Metabolites ; 14(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921461

RESUMEN

Biocide resistance poses a significant challenge in industrial processes, with bacteria like Pseudomonas oleovorans exhibiting intrinsic resistance to traditional antimicrobial agents. In this study, the impact of biocide exposure on the metabolome of two P. oleovorans strains, namely, P. oleovorans P4A, isolated from contaminated coating material, and P. oleovorans 1045 reference strain, were investigated. The strains were exposed to 2-Methylisothiazol-3(2H)-one (MI) MIT, 1,2-Benzisothiazol-3(2H)-one (BIT), and 5-chloro-2-methyl-isothiazol-3-one (CMIT) at two different sub-inhibitory concentrations and the lipids and polar and semipolar metabolites were analyzed by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry UPLC-Q-TOF/MS. Exposure to the BIT biocide induced significant metabolic modifications in P. oleovorans. Notable changes were observed in lipid and metabolite profiles, particularly in phospholipids, amino acid metabolism, and pathways related to stress response and adaptation. The 1045 strain showed more pronounced metabolic alterations than the P4A strain, suggesting potential implications for lipid, amino acid metabolism, energy metabolism, and stress adaptation. Improving our understanding of how different substances interact with bacteria is crucial for making antimicrobial chemicals more effective and addressing the challenges of resistance. We observed that different biocides trigged significantly different metabolic responses in these strains. Our study shows that metabolomics can be used as a tool for the investigation of metabolic mechanisms underlying biocide resistance, and thus in the development of targeted biocides. This in turn can have implications in combating biocide resistance in bacteria such as P. oleovorans.

18.
Sci Total Environ ; 935: 173123, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38740202

RESUMEN

Low-VOC waterborne asphalt-emulsion (AE) seal coat is considered more sustainable than solvent-based coal-tar emulsion seal coat because asphalt emulsions contain negligible amounts of carcinogenic PAHs and release fewer harmful volatile organic compounds. Yet, many low-VOC coatings leach water-soluble substances under outdoor conditions. To investigate the chemical composition of seal coat leachates, three AE formulations were cured under natural weathering conditions and exposed to simulated runoff over a 10-day field trial. Runoff was collected and concentrated using ion-exchange solid-phase extraction (SPE) and analyzed using gas chromatography/mass spectrometry (GC-MS). Leached compounds included hydrocarbons, esters, amines, siloxanes, plasticizers, biocides, polyethylene glycol (PEG) ethers, urethanes, and toluene diisocyanate (TDI). Glycol ethers comprised 29-97 % of the measured leachate mass. Two seal coat formulations contained isothiazolinone biocides, methylchloro- and methylisothiazolinone (CMIT/MIT; 0.5 mg/L in runoff), while a third seal coat formulation continuously leached TDI, a reactive polyurethane (PU) precursor (0.7 mg/L in runoff). Biocide-containing leachates showed acute toxicity to the freshwater water flea, Ceriodaphnia dubia after 48 h, while TDI-containing leachate showed no acute toxicity, suggesting that leachate toxicity was due to in-can polymer preservatives. As biocides are implicated in impaired reproductive signaling, these results support the use of alkaline pH to avoid biofouling and reinforce the goal of reducing and/or avoiding the use of biocides altogether, especially for environmentally friendly products.


Asunto(s)
Ceriodaphnia dubia , Contaminantes Químicos del Agua , Animales , Ceriodaphnia dubia/efectos de los fármacos , Hidrocarburos , Petróleo , Polímeros , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 31(22): 33098-33106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676862

RESUMEN

A number of biocidal disinfectant chemicals are used as household products to prevent spread of pathogens. People are commonly exposed to multiple chemicals through those disinfectants. However, effects of interactions (e.g., synergism) between disinfectants on human health outcomes have been rarely studied. In this study, we aimed to investigate associations of a mixture of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) and polyhexamethylene guanidine (PHMG), which had been used as humidifier disinfectants (HDs) in South Korea, with HD-associated lung injury (HDLI) in a Korean population (n = 4058) with HD exposure through use of HD products. Exposure to HD was retrospectively assessed by an interview-based standardized survey, and HDLI was determined by clinical assessment. After adjusting for covariates, PHMG-specific exposure indices (e.g., amount of use, indoor air concentration, and weekly exposure level) were dose-dependently associated with HDLI (their odds ratios for the comparison of third tertile versus first tertile were 1.95, 1.77, and 2.16, respectively). CMIT/MIT exposure was not observed to have a significant association with HDLI in a single chemical exposure model; however, associations between PHMG exposure and HDLI were strengthened by co-exposure to CMIT/MIT in combined chemical exposure models, where synergistic interactions between CMIT/MIT use and PHMG indices (amount of use and weekly exposure level) were observed (p-interaction in additive scale: 0.02 and 0.03, respectively). Our findings imply that adverse effects of PHMG exposure on lung injury among HD users might be worsened by co-exposure to CMIT/MIT. Given that plenty of household products contain disinfectants on global markets, epidemiological and toxicological investigations are warranted on interaction effects of co-exposure to disinfectants.


Asunto(s)
Desinfectantes , Guanidinas , Humidificadores , Lesión Pulmonar , Humanos , Lesión Pulmonar/inducido químicamente , República de Corea , Masculino , Femenino , Tiazoles , Adulto , Persona de Mediana Edad
20.
Toxics ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38668471

RESUMEN

Pesticides must not pose unacceptable risks to human health, so risk assessments are conducted before products are authorised. Dermal exposure is often the main route of intake, so estimating realistic and trustworthy dermal absorption values is crucial for risk assessment. Although there are agreed test guidelines for in vitro dermal absorption studies, not every product is tested due to cost reasons. The present dataset consists of 945 individual in vitro experiments on the dermal absorption of human skin with 179 active substances of pesticides in 353 different mixtures, including concentrates and dilutions. The dataset was evaluated to identify the possible impacts of experimental conditions and physico-chemical properties on dermal absorption. The dataset was also analysed to assess the appropriateness of the pro rata correction for untested dilutions, and the set concentration cut-off to decide on the dilution status for choosing a default value on dermal absorption. The study found that the implementation of specific guidelines improved the harmonisation of study conduct, with support for approaches such as pro rata correction and default values. Further analysis of the specific co-formulants may identify influencing factors that may be more important than the experimental variables.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA