Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 592
Filtrar
1.
Ecol Appl ; : e3037, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354746

RESUMEN

Invasive non-native species are one of the main causes of degradation of ecosystems worldwide. The control of invasive species is key to reducing threats to ecosystem viability in the long term. Observations of structural changes in ecological interaction networks following invasive species suppression can be useful to monitor the success of ecological restoration initiatives. We evaluated the structure of plant-bird frugivory interaction networks in a plant community invaded by the guava tree (Psidium guajava L.) by comparing network metrics before and after control actions. Psidium guajava was relevant in all metrics for the unmanaged network in this study, with high degree centrality and high nestedness contribution. Based on the asymmetry of species interactions, we found that birds were highly dependent on the invasive plant before suppression. Once P. guajava trees were eliminated, bird and plant species richness, total number of interactions, and modularity increased, whereas nestedness and interaction strength asymmetry decreased. The diet of the bird community became more diversified once P. guajava was no longer available and relevant species roles in community structure emerged. Our results corroborate the fact that ecological restoration interventions should include the control of non-native plant species that attract frugivorous animals in order to diversify plant-frugivore interactions and thus maintain biodiversity in natural ecosystems.

2.
Ecol Evol ; 14(10): e70376, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39385842

RESUMEN

Concerns and limitations relating to data quality, reliability and accuracy hamper the use of citizen science initiatives in research and conservation. Valued for their cost-effective and large data acquisition potential, citizen science platforms such as iNaturalist have been highlighted as beneficial tools to supplement monitoring using traditional data sources. However, intrinsic uncertainties in unverified observations stem from the nature of species being identified, the quality of uploaded media and georeferencing; these factors can limit the value of the data as they can result in inaccurate records. Verification of data prior to use is critical. This process can, however, be laborious and time-consuming, with bias associated with the individual responsible for the task. To address this challenge this study developed a protocol for assigning confidence in iNaturalist observations, using marine alien and cryptogenic species observations from South Africa as a case study. A positive relationship was found between the accuracy of observations and confidence score. The inherent data quality assessment in iNaturalist, termed quality grade, was found to be an inadequate proxy for accuracy. The results of this study highlight the importance of the expert verification phase when using citizen science data. The confidence score facilitates a streamlined approach to the verification process by reducing the time taken to validate records, while assessing the three levels of uncertainty within observations and reducing researcher bias. It is recommended that this confidence score be used as an essential tool when using citizen science derived data.

3.
Sci Total Environ ; : 176851, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396794

RESUMEN

Rugulopteryx okamurae is a brown alga native to the northwestern Pacific and invasive elsewhere. It was first sighted in the southern Strait of Gibraltar in 2015, expanded to the northern Strait of Gibraltar in 2016, and had covered most of the northern Alboran Sea by 2021. Understanding the factors that may explain its different phases of colonisation is crucial for developing mitigation and control measures. We modelled the yearly distribution of R. okamurae in the northern Alboran Sea from 2016 to 2021 using the favourability function, which produces commensurable biogeographic models despite variations in species prevalence across years. This function also allows the use of fuzzy logic operations to combine previous environmental models based on different explanatory factors, namely biotope, biocoenosis, coastal influence, accessibility through dispersion, and oceanographic characteristics. Significant environmental models were assembled, and their fuzzy intersection and union applied. This resulted in two final biogeographic models for each year, which were used to predict the distribution of the species in following years. The biogeographic models exhibited a high predictive capacity, as most years accurately predicted colonisation in the following year or even multiple years ahead. Accessibility through dispersion and oceanographic characteristics were critical during the initial years of establishment, while complete establishment depended on all five factors together. Expansion to the whole northern Alboran coast was explained by favourable conditions for any of the explanatory factors, while all factors except coastal influence explained the saturation of the invasion. We conclude that the biogeographic models prove valuable in understanding the factors that contributed to the spread of R. okamurae in the northern Alboran Sea. This approach could help prevent further colonisation and mitigate the ecosystem and commercial consequences of R. okamurae's invasion.

4.
Proc Biol Sci ; 291(2032): 20241130, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353554

RESUMEN

Global change is believed to be a major driver of the emergence of invasive pathogens. Yet, there are few documented examples that illustrate the processes that hinder or trigger their geographic spread. Here, we present phylogenetic, epidemiological and historical evidence to explain how European vineyards escaped Xylella fastidiosa (Xf), the vector-borne bacterium responsible for Pierce's disease (PD). Using Bayesian temporal reconstruction, we show that the export of American grapevines to France as rootstocks to combat phylloxera (~1872-1895) preceded the spread of the Xf grapevine lineage in the USA. We found that the time of the most recent common ancestor in California dates to around 1875, which agrees with the emergence of the first PD outbreak and the expansion into the southeastern US around 1895. We also show that between 1870 and 1990, climatic conditions in continental Europe were mostly below the threshold for the development of PD epidemics. However, our model indicates an inadvertent expansion of risk in southern Europe since the 1990s, which is accelerating with global warming. Our temporal approach identifies the biogeographical conditions that have so far prevented PD in southern European wine-producing areas and predicts that disease risk will increase substantially with increasing temperatures.


Asunto(s)
Enfermedades de las Plantas , Vitis , Xylella , Vitis/microbiología , Enfermedades de las Plantas/microbiología , Europa (Continente) , Teorema de Bayes , Filogenia , Filogeografía , Cambio Climático
5.
Trends Ecol Evol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39271414

RESUMEN

The dispersal of organisms in the Anthropocene has been profoundly altered by human activities, with far-reaching consequences for humans, biodiversity, and ecosystems. Managing such dispersal effectively is critical to achieve the 2030 targets of the Kunming-Montreal Global Biodiversity Framework. Here, we bring together insights from invasion science, movement ecology, and conservation biology, and extend a widely used classification framework for the introduction pathways of alien species to encompass other forms of dispersal. We develop a simple, global scheme for classifying the movement of organisms into the types of dispersal that characterise the Anthropocene. The scheme can be used to improve our understanding of dispersal, provide policy relevant advice, inform conservation and biosecurity actions, and enable monitoring and reporting towards conservation targets.

6.
J Pest Sci (2004) ; 97(4): 2073-2085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323576

RESUMEN

Benefits provided by urban trees are increasingly threatened by non-native pests and pathogens. Monitoring of these invasions is critical for the effective management and conservation of urban tree populations. However, a shortage of professionally collected species occurrence data is a major impediment to assessments of biological invasions in urban areas. We applied data from iNaturalist to develop a protocol for monitoring urban biological invasions using the polyphagous shot hole borer (PSHB) invasion in two urban areas of South Africa. iNaturalist records for all known PSHB reproductive host species were used together with data on localities of sites for processing plant biomass to map priority monitoring areas for detecting new and expanding PSHB infestations. Priority monitoring areas were also identified using the distribution of Acer negundo, a highly susceptible host that serves as a sentinel species for the detection of PSHB infestations. iNaturalist data provided close to 9000 observations for hosts in which PSHB is known to reproduce in our study area (349 of which were A. negundo). High-priority areas for PSHB monitoring include those with the highest density of PSHB reproductive hosts found close to the 140 plant biomass sites identified. We also identified high-priority roads for visual and baited trap surveys, providing operational guidance for practitioners. The monitoring protocol developed in this study highlights the value of citizen or community science data in informing the management of urban biological invasions. It also advocates for the use of platforms such as iNaturalist as essential tools for conservation monitoring in urban landscapes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-024-01744-7.

8.
Biodivers Data J ; 12: e125517, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184365

RESUMEN

Along with transportation development, climate change and socio-economic changes, invasive alien species (IAS) are causing a significant decline in biodiversity around the world. Internationally, policies for pre-invasion management of IAS are being emphasised to minimise damage from biological invasions. In South Korea, through the 2nd Alien Species Management Plan (2019-2023), IAS that are not yet present in the country but are likely to be introduced are designated as Alert Alien Species (AAS). In this study, the overall process of AAS designation is summarised and improvements to the current system are presented. To select AAS, an invasive alien species database (IASD) of 8,456 species was built by integrating the IAS lists from many countries. Amongst them, 1,534 species, included in IASD at genus, family and order level, were excluded and 3,298 species confirmed to have been introduced to South Korea were excluded from the AAS candidate species. After the creation and review of species profiles by experts, 150 species were finally designated as AAS in 2023. The AAS discovery process needs to reflect international trends of IAS and be continuously supplemented through policy research of other countries. In addition, the IAS management system in South Korea, in which various ministries play their own roles with sufficient data sharing, should be systematically linked from introduction to control of IAS.

9.
Evol Lett ; 8(4): 600-609, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100228

RESUMEN

Human transport of species across oceans disrupts natural dispersal barriers and facilitates hybridization between previously allopatric species. The recent introduction of the North Pacific sea squirt, Ciona robusta, into the native range of the North Atlantic sea squirt, Ciona intestinalis, is a good example of this outcome. Recent studies have revealed an adaptive introgression in a single chromosomal region from the introduced into the native species. Here, we monitored this adaptive introgression over time, examining both the frequency of adaptive alleles at the core and the hitchhiking footprint in the shoulders of the introgression island by studying a thousand Ciona spp. individuals collected in 22 ports of the contact zone, 14 of which were sampled 20 generations apart. For that purpose, we developed a KASP multiplex genotyping approach, which proved effective in identifying native, nonindigenous and hybrid individuals and in detecting introgressed haplotypes. We found no early generation hybrids in the entire sample, and field observations suggest a decline in the introduced species. At the core region of the introgression sweep, where the frequency of C. robusta alleles is the highest and local adaptation genes must be, we observed stable frequencies of adaptive alien alleles in both space and time. In contrast, we observed erosion of C. robusta ancestry tracts in flanking chromosomal shoulders on the edges of the core, consistent with the second phase of a local sweep and a purge of hitchhiked incompatible mutations. We hypothesize that adaptive introgression may have modified the competition relationships between the native and invasive species in human-altered environments.

10.
Parasit Vectors ; 17(1): 320, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068485

RESUMEN

BACKGROUND: Biological invasions pose risks to the normal functioning of ecosystems by altering the structure and composition of several communities. Molluscs stand out as an extensively studied group given their long history of introduction by either natural or anthropogenic dispersal events. An alien population of the lymnaeid species Orientogalba viridis was first sighted in 2009 in southern Spain. In its native range (Australasian), this species is one of the main intermediate hosts of Fasciola hepatica, a major worldwide trematode parasite largely affecting humans, domestic animals and wildlife. METHODS: We collected field populations of O. viridis from its native (Malaysia) and invaded (Spain) ranges. We performed detailed morphoanatomical drawings of the species and screened for natural infection of parasites. Individuals were molecularly characterized using ITS2 for comparison with existing sequences in a fine phylogeography study. We founded experimental populations at two different conditions (tropical, 26 °C and temperate, 21 °C) to study the life-history traits of exposed and non-exposed individuals to different F. hepatica isolates. RESULTS: We found a 9% natural prevalence of trematode infection (98% similarity with a sequence of Hypoderaeum conoideum [Echinostomatidae]) in the Spanish field population. The haplotypes of O. viridis found in our study from Spain clustered with Australian haplotypes. Experimental infection with F. hepatica was successful in both experimental conditions but higher in tropical (87% prevalence) than in temperate (73%). Overall lifespan, however, was higher in temperate conditions (mean 32.5 ± 7.4 weeks versus 23.3 ± 6.5) and survivorship remained above 70% during the first 20 weeks. In parasite-exposed populations, life expectancy dropped from an overall 37.75 weeks to 11.35 weeks but still doubled the time for initial cercariae shedding. Cercariae shedding started at day 23 post-exposure and peaked between days 53 and 67 with an average of 106 metacercariae per snail. CONCLUSIONS: Whether O. viridis will succeed in Europe is unknown, but the odds are for a scenario in which a major snail host of F. hepatica occupy all available habitats of potential transmission foci, ravelling the epidemiology of fasciolosis. This research provides a comprehensive understanding of O. viridis biology, interactions with parasites and potential implications for disease transmission dynamics, offering valuable insights for further research and surveillance.


Asunto(s)
Especies Introducidas , Caracoles , Animales , Caracoles/parasitología , España/epidemiología , Fasciola hepatica/genética , Fasciola hepatica/fisiología , Agua Dulce/parasitología , Trematodos/genética , Trematodos/clasificación , Trematodos/fisiología , Filogeografía
11.
Curr Zool ; 70(3): 320-331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39035766

RESUMEN

Whether introduced into a completely novel habitat or slowly expanding their current range, the degree to which animals can efficiently explore and navigate new environments can be key to survival, ultimately determining population establishment and colonization success. We tested whether spatial orientation and exploratory behavior are associated with non-native spread in free-living bank voles (Myodes glareolus, N = 43) from a population accidentally introduced to Ireland a century ago. We measured spatial orientation and navigation in a radial arm maze, and behaviors associated to exploratory tendencies and risk-taking in repeated open-field tests, at the expansion edge and in the source population. Bank voles at the expansion edge re-visited unrewarded arms of the maze more, waited longer before leaving it, took longer to start exploring both the radial arm maze and the open field, and were more risk-averse compared to conspecifics in the source population. Taken together, results suggest that for this small mammal under heavy predation pressure, a careful and thorough exploration strategy might be favored when expanding into novel environments.

12.
Biology (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056678

RESUMEN

The global trade of non-native pet birds has increased in recent decades, and this has accelerated the introduction of invasive birds in the wild. This study employed ensemble species distribution modelling (eSDM) to assess potential habitat suitability and environmental predictor variables influencing the potential distribution of non-native pet bird species reported lost and sighted in South Africa. We used data and information on lost and found pet birds from previous studies to establish and describe scenarios of how pet birds may transition from captivity to the wild. Our study revealed that models fitted and performed well in predicting the suitability for African grey (Psittacus erithacus), Budgerigar (Melopsittacus undulatus), Cockatiel (Nymphicus hollandicus), Green-cheeked conure (Pyrrhura molinae), Monk parakeet (Myiopsitta monachus), and Rose-ringed parakeet (Psittacula krameri), with the mean weighted AUC and TSS values greater than 0.765. The predicted habitat suitability differed among species, with the suitability threshold indicating that between 61% and 87% of areas were predicted as suitable. Species with greater suitability included the African grey, Cockatiel, and Rose-ringed parakeet, which demonstrated significant overlap between their habitat suitability and reported lost cases. Human footprint, bioclimatic variables, and vegetation indices largely influenced predictive habitat suitability. The pathway scenario showed the key mechanisms driving the transition of pet birds from captivity to the wild, including the role of pet owners, animal rescues, adoption practices, and environmental suitability. Our study found that urban landscapes, which are heavily populated, are at high risk of potential invasion by pet birds. Thus, implementing a thorough surveillance survey is crucial for monitoring and evaluating the establishment potential of pet species not yet reported in the wild.

13.
PeerJ ; 12: e17425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832036

RESUMEN

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Asunto(s)
Bivalvos , Animales , Mar Mediterráneo , Bivalvos/clasificación , Crustáceos/clasificación , Moluscos/clasificación , Israel , Distribución Animal , Especies Introducidas
14.
Evol Appl ; 17(6): e13709, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884022

RESUMEN

Predicting the risk of establishment and spread of populations outside their native range represents a major challenge in evolutionary biology. Various methods have recently been developed to estimate population (mal)adaptation to a new environment with genomic data via so-called Genomic Offset (GO) statistics. These approaches are particularly promising for studying invasive species but have still rarely been used in this context. Here, we evaluated the relationship between GO and the establishment probability of a population in a new environment using both in silico and empirical data. First, we designed invasion simulations to evaluate the ability to predict establishment probability of two GO computation methods (Geometric GO and Gradient Forest) under several conditions. Additionally, we aimed to evaluate the interpretability of absolute Geometric GO values, which theoretically represent the adaptive genetic distance between populations from distinct environments. Second, utilizing public empirical data from the crop pest species Bactrocera tryoni, a fruit fly native from Northern Australia, we computed GO between "source" populations and a diverse range of locations within invaded areas. This practical application of GO within the context of a biological invasion underscores its potential in providing insights and guiding recommendations for future invasion risk assessment. Overall, our results suggest that GO statistics represent good predictors of the establishment probability and may thus inform invasion risk, although the influence of several factors on prediction performance (e.g., propagule pressure or admixture) will need further investigation.

15.
Front Plant Sci ; 15: 1411767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872881

RESUMEN

Introduction: Freshwater ecosystems are susceptible to invasion by alien macrophytes due to their connectivity and various plant dispersal vectors. These ecosystems often experience anthropogenic nutrient enrichment, favouring invasive species that efficiently exploit these resources. Propagule pressure (reflecting the quantity of introduced individuals) and habitat invasibility are key determinants of invasion success. Moreover, the enemy release hypothesis predicts that escape from natural enemies, such as herbivores, allows alien species to invest more resources to growth and reproduction rather than defense, enhancing their invasive potential. Yet, the combined impact of propagule pressure, herbivory, and nutrient enrichment on the competitive dynamics between invasive alien macrophytes and native macrophyte communities is not well understood due to a paucity of studies. Methods: We conducted a full factorial mesocosm experiment to explore the individual and combined effects of herbivory, nutrient levels, propagule pressure, and competition on the invasion success of the alien macrophyte Myriophyllum aquaticum into a native macrophyte community comprising Vallisneria natans, Hydrilla verticillata, and Myriophyllum spicatum. This setup included varying M. aquaticum densities (low vs. high, simulating low and high propagule pressures), two levels of herbivory by the native snail Lymnaea stagnalis (herbivory vs no-herbivory), and two nutrient conditions (low vs. high). Myriophyllum aquaticum was also grown separately at both densities without competition from native macrophytes. Results: The invasive alien macrophyte M. aquaticum produced the highest shoot and total biomass when simultaneously subjected to conditions of high-density intraspecific competition, no herbivory, and low-nutrient availability treatments. Moreover, a high propagule pressure of M. aquaticum significantly reduced the growth of the native macrophyte community in nutrient-rich conditions, but this effect was not observed in nutrient-poor conditions. Discussion: These findings indicate that M. aquaticum has adaptive traits enabling it to flourish in the absence of herbivory (supporting the enemy release hypothesis) and in challenging environments such as intense intraspecific competition and low nutrient availability. Additionally, the findings demonstrate that when present in large numbers, M. aquaticum can significantly inhibit the growth of native macrophyte communities, particularly in nutrient-rich environments. Consequently, reducing the propagule pressure of M. aquaticum could help control its spread and mitigate its ecological impact. Overall, these findings emphasize that the growth and impacts of invasive alien plants can vary across different habitat conditions and is shaped by the interplay of biotic and abiotic factors.

16.
Environ Monit Assess ; 196(7): 673, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940993

RESUMEN

The emerging alien cactus Cylindropuntia pallida (Rose) F.M. Knuth originates from northern Mexico and introduced into South Africa in 1940s as an ornamental plant.  Multiple populations of C. pallida have been detected in various areas of South Africa. C. pallida has effective propagule dispersal and rapid recruitment making it a likely key future invader, and thus, is a target for eradication in South Africa. To eradicate C. pallida populations, a foliar spray (i.e. using a 2% concentration of herbicide with fluroxypyr and triclopyr) has been applied to plants in nine populations, with population sizes ranging between 535 and 2701 plants and populations covering areas of 100 -1000 ha. The aims of the study were to investigate the efficacy of the foliar spray method used to eradicate C. pallida; to investigate the impacts of C. pallida invasions on native vegetation integrity; to apply species distribution models (SDMs) to identify suitable climates for C. pallida in South Africa; and to document the biomes vulnerable to the negative impact of C. pallida in South Africa. Results show that foliar spray killed many C. pallida plants (mean percentage of dead plants ± SE, 83.3 ± 6.4; n = 9; range, 70-96%), with adult plants taking about 2 months to die completely. The efficacy of the herbicide was not affected by plant size or the concentration of the herbicide used. The invaded site had significantly greater vegetation cover which persisted across winter compared to the uninvaded site, but the latter site's vegetation cover significantly dropped in winter. Also, the invaded site had lower plant species diversity than the uninvaded site and was dominated by species in the Poaceae and Asteraceae plant families. Additionally, a normalised difference vegetation index (NDVI) analysis shows that the uninvaded site has higher vegetation cover and health than the invaded site wherein a notable decline in vegetation health was observed between 2019 and 2022. A large area (> 15 million hectares) was predicted to be suitable for invasion by C. pallida in provinces with arid and warm temperate climates - the fynbos and grassland biomes are the most vulnerable. Because of the observed negative impacts, high environmental compatibility, and high cost of clearing large infestations, we advocate for considering the biocontrol method for effectively managing C. pallida invasion in South Africa.


Asunto(s)
Cactaceae , Herbicidas , Especies Introducidas , Sudáfrica , Monitoreo del Ambiente
17.
Ecol Lett ; 27(6): e14465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38934685

RESUMEN

A branch of island biogeography has emerged to explain alien species diversity in the light of the biogeographic and anthropogenic context, yet overlooking the functional and phylogenetic facets. Evaluating alien and native birds of 407 oceanic islands worldwide, we built structural equation models to assess the direct and indirect influence of biotic, geographic, and anthropogenic contexts on alien functional diversity (FD) and phylogenetic diversity (PD). We found that alien taxonomic richness was the main predictor of both diversities. Anthropogenic factors, including colonization pressure, associated with classic biogeographical variables also strongly influenced alien FD and PD. Specifically, habitat modification and human connectivity markedly drove alien FD, especially when controlled by taxonomic richness, whereas the human population size, gross domestic product, and native PD were crucial at explaining alien PD. Our findings suggest that humans not only shape taxonomic richness but also other facets of alien diversity in a complex way.


Asunto(s)
Biodiversidad , Aves , Especies Introducidas , Islas , Filogenia , Animales , Aves/fisiología , Filogeografía , Humanos , Ecosistema , Efectos Antropogénicos
18.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732411

RESUMEN

Soil properties can affect plant population dynamics and the coexistence of native and invasive plants, thus potentially affecting community structure and invasion trends. However, the different impacts of soil physicochemical properties on species diversity and structure in native and invaded plant communities remain unclear. In this study, we established a total of 30 Alternanthera philoxeroides-invaded plots and 30 control plots in an area at the geographical boundary between North and South China. We compared the differences in species composition between the invaded and native plant communities, and we then used the methods of regression analysis, redundancy analysis (RDA), and canonical correspondence analysis (CCA) to examine the impacts of soil physicochemical properties on four α-diversity indices and the species distribution of these two types of communities. We found that A. philoxeroides invasion increased the difference between the importance values of dominant plant species, and the invasion coverage had a negative relationship with the soil-available potassium (R2 = 0.135; p = 0.046) and Patrick richness index (R2 = 0.322; p < 0.001). In the native communities, the species diversity was determined with soil chemical properties, the Patrick richness index, the Simpson dominance index, and the Shannon-Wiener diversity index, which all decreased with the increase in soil pH value, available potassium, organic matter, and ammonium nitrogen. However, in the invaded communities, the species diversity was determined by soil physical properties; the Pielou evenness index increased with increasing non-capillary porosity but decreased with increasing capillary porosity. The determinants of species distribution in the native communities were soil porosity and nitrate nitrogen, while the determinants in the invaded communities were soil bulk density and available potassium. In addition, compared with the native communities, the clustering degree of species distribution in the invaded communities intensified. Our study indicates that species diversity and distribution have significant heterogeneous responses to soil physicochemical properties between A. philoxeroides-invaded and native plant communities. Thus, we need to intensify the monitoring of soil properties in invaded habitats and conduct biotic replacement strategies based on the heterogeneous responses of native and invaded communities to effectively prevent the biotic homogenization that is caused by plant invasions under environmental changes.

19.
Parasitol Res ; 123(5): 205, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709381

RESUMEN

Between 1898 and 1940, eight human cases of diphyllobothriasis were reported in Argentina, always in recently arrived European immigrants. In 1982, the first autochthonous case was detected, and since then, 33 other autochthonous cases have been reported, totaling 42 cases of human diphyllobothriasis in Argentina before the present study. Our aim is to update the information on diphyllobothriasis in Argentina by identifying specimens from new cases using morphometrical and/or molecular methods. We also aim to assess the epidemiological relevance of this food-borne disease in the country. Anamnestic data were obtained from patients or professionals, along with 26 worms identified using morphometrical (21 samples) and molecular techniques (5 samples). All the patients acquired the infection by consuming freshwater salmonids caught in Andean lakes in Northern Patagonia. Morphometrics and DNA markers of worms were compatible with Dibothriocephalus latus. In total, 68 human cases have been detected in Argentina, 60 of which were autochthonous. The human population living North-western Patagonia, whose lakes are inhabited by salmonids, is increasing. Similarly, the number of other definitive hosts for Dibothriocephalus dendriticus (gulls) and for D. latus (dogs) is also increasing. In addition, salmonid fishing and the habit of consuming home-prepared raw fish dishes are becoming widespread. Therefore, it is to be expected that diphyllobothriasis in Argentina will increase further.


Asunto(s)
Difilobotriosis , Diphyllobothrium , Argentina/epidemiología , Difilobotriosis/epidemiología , Difilobotriosis/parasitología , Humanos , Animales , Masculino , Femenino , Diphyllobothrium/genética , Diphyllobothrium/aislamiento & purificación , Diphyllobothrium/clasificación , Adulto , Persona de Mediana Edad , Anciano , Salmonidae/parasitología , Enfermedades Transmitidas por los Alimentos/parasitología , Enfermedades Transmitidas por los Alimentos/epidemiología , Adulto Joven , Historia del Siglo XX , Historia del Siglo XIX
20.
Mar Pollut Bull ; 204: 116506, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796992

RESUMEN

Human-induced pressures have led to substantial changes in marine ecosystems worldwide, with the introduction of non-indigenous species (NIS) emerging as a significant threat to ecological, economic, and social aspects. The Macaronesian islands, comprising the Azores, Madeira, Canary Islands, and Cabo Verde archipelagos, are regions where the regional economy is dependent on marine resources (e.g., marine traffic, ecotourism and fisheries). Despite their importance, concerted efforts to manage marine biological invasions in Macaronesia have been scarce. In this context, the current study aims to contribute to the much-needed debate on biosecurity measures in this unique insular ecosystem to prevent and mitigate the impact of NIS. By adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, this work validated and analyzed 260 documents providing insights into the management of NIS in Macaronesia until 2022. These documents revealed the presence of 29 Invasive Alien Species (IAS), most of which are misconceptions regarding this terminology. Most studies focused on the stages of early detection, rapid response, and eradication across the archipelagos. Cabo Verde had comparatively fewer studies. The most common techniques include monitoring/sampling, literature reviews, and taxonomic reviews. NIS introduction pathways were mainly attributed to transport (stowaway) and unaided migration, with ship fouling, ballast water, rafting, ocean currents, and tropicalization being also identified as significant contributors. This systematic review highlights the current efforts to establish robust biosecurity protocols in Macaronesia and emphasizes the urgent need to safeguard the region's ecological, economic, and social well-being.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Animales , Conservación de los Recursos Naturales/métodos , Toma de Decisiones , Ecosistema
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA