RESUMEN
In this study current data on the content of POPs in soft tissues of bivalvia species from the Mytilidae family are presented. The highest concentrations of both OCPs and PCBs were found in Amur Bay. The lowest levels were recorded for Bolshoy Pelis Island. Temporal trends of pollutant concentrations showed a decrease from 1996 to 2022. Nevertheless, in 2017 and 2022, we recorded substantial concentrations of less persistent, lower chlorinated PCB congeners that characterized a recent entry of pollutants into the water body. When comparing the obtained data with the results of studies conducted in the countries of the Asia-Pacific region, it was found that the levels of DDT and its metabolites and PCBs in mollusks of the coastal waters of the Sea of Japan were lower than in other countries of the region, however, relatively high pollution of Peter the Great Bay with HCH isomers was noted.
RESUMEN
A simple and reliable methodology for the detection of paralytic shellfish toxins (PSTs) in bivalve tissues using potentiometric chemical sensors was developed. Five methods of PST extraction from mussel and oyster tissues were evaluated, including the AOAC-recommended method, which served as the reference. The main objective was to minimize the matrix effect of the extracts on the sensors' responses and ensure efficient toxin recovery. Extraction procedures using acetic acid with heating and water yielded the highest responses from the potentiometric chemical sensors to PSTs. The highest recovery of PSTs from bivalve tissues was achieved with extraction using acetic acid and heating. Further extract purification, which is indispensable for liquid chromatography with fluorometric detection (LC-FLD) analysis, was found to be unnecessary for analysis with chemical sensors. While water extraction can also be used as a rapid and simple PST extraction method, the lower recoveries should be considered when interpreting the results. Further research is needed to identify the compounds remaining in the extracts that cause a decrease in sensor responses and to develop procedures for their elimination.
Asunto(s)
Bivalvos , Toxinas Marinas , Potenciometría , Animales , Bivalvos/química , Potenciometría/métodos , Toxinas Marinas/análisis , Toxinas Marinas/aislamiento & purificación , Técnicas Biosensibles , Carne/análisis , Cromatografía LiquidaRESUMEN
In bivalves, which are molluscs enclosed in a biomineralized shell, a diversity of neuropeptide precursors has been described but their involvement in shell growth has been largely neglected. Here, using a symmetric marine bivalve, the Mediterranean mussel (Mytilus galloprovincialis), we uncover a role for the neuroendocrine system and neuropeptides in shell production. We demonstrate that the mantle is rich in neuropeptide precursors and that a complex network of neuropeptide-secreting fibres innervates the mantle edge a region highly involved in shell growth. We show that shell damage and shell repair significantly modify neuropeptide gene expression in the mantle edge and the nervous ganglia (cerebropleural ganglia, CPG). When the CPG nerve commissure was severed, shell production was impaired after shell damage, and modified neuropeptide gene expression, the spatial organization of nerve fibres in the ganglia and mantle and biomineralization enzyme activity in the mantle edge. Injection of CALCIa and CALCIIa peptides rescued the impaired shell repair phenotype providing further support for their role in biomineralization. We propose that the regulatory mechanisms identified are likely to be conserved across bivalves and other shelled molluscs since they all share a similar nervous system, a common mantle biomineralization toolbox, and shell structure.
RESUMEN
Concentrations of typical persistent organochlorine pollutants (POCPs) like organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in five bivalve species collected from central Vietnamese coasts were determined to provide insights into spatial distribution and bioaccumulation characteristics of these substances. Concentrations of pollutants decreased in the order: PCBs (median 14.6; range 1.39-74.1), dichlorodiphenyltrichloroethane and its metabolites DDTs (2.92; 0.282-70.7), hexachlorocyclohexanes HCHs (2.46; 0.081-30.1), and endosulfan compounds ENDs (1.67; 0.041-36.6) ng/g wet weight. Considerable levels of legacy POCPs in the biota are likely attributed to illegal and/or unintentional sources. Concentrations and accumulation profiles of POCPs in biota samples were affected by species- and site-specific factors. The biota-sediment accumulation factors predicted enrichment potentials of OCPs (notably ENDs and DDTs) from sediment to biota in some certain areas.
RESUMEN
In a global change scenario, ocean warming and pathogen infection can occur simultaneously in coastal areas, threatening marine species. Data are shown on the impact of temperature on early larvae of the Mediterranean mussel Mytilus galloprovincialis. Increasing temperatures (18-20-22 °C) altered larval phenotypes at 48 hpf and affected gene expression from eggs to 24 and 48 hpf, with shell biogenesis related genes among the most affected. The effects of temperature on larval susceptibility to infection were evaluated using Vibrio coralliilyticus, a coral pathogen increasingly associated with bivalve mortalities, whose ecology is affected by global warming. Malformations and mortalities at 48 hpf were observed at higher temperature and vibrio concentrations, with interactive effects. In non-lethal conditions, interactions on gene expression at 24 and 48 hpf were also detected. Although temperature is the main environmental driver affecting M. galloprovincialis early larvae, warming may increase the susceptibility to vibrio infection, with consequences on mussel populations.
RESUMEN
Toxic harmful algal blooms (HABs) have received increasing attention owing to their threat to the health of aquatic life and seafood consumers. This study evaluated the impacts of elevated atmospheric partial pressure of CO2 (pCO2) on the production of paralytic shellfish toxins (PSTs) in different Alexandrium spp. strains, together with its further effects on the bioaccumulation/elimination dynamics of PSTs in bivalves contaminated with PSTs from toxic dinoflagellates. Our results showed that elevated pCO2 stimulated the growth of the two Alexandrium spp. (A. catenella and A. pacificum) isolated from the northern and southern coastal areas of China, respectively, and affected PST production including content and toxicity of the two strains differently. Further PSTs bioaccumulation/elimination in PSTs-contaminated Manila clam, Ruditapes philippinarum under high pCO2 also occurred. It is worth noting the biotransformation of neosaxitoxin (NEO) with high toxicity through trophic transfer with effect of elevated pCO2. When in microalgae cultured under the control (410 ppm) and elevated pCO2 conditions (495 and 850 ppm), the proportion of NEO in the PST content produced by A. catenella was reduced from 11.1 to 6.4 and 2.6 %, while the proportion of NEO in A. pacificum was increased from 3.1 to 3.6 and 4.7 %, respectively. NEO accounted for >50 % of total PST contents in clams, which were biotransformed via transfer from dinoflagellates and higher pCO2 enhanced this biotransformation leading to increased NEO accumulation. The negatively affected elimination of PSTs, especially NEO, in clams fed with A. catenella or A. pacificum, indicates that the detoxification of PSTs-contaminated clams may be more difficult under elevated pCO2. This study provides reference for developing models to assess the safety of bivalves under the co-stress of environmental change and toxic HABs, suggesting that ocean acidification may lead to the higher safety risk of Manila clams exposed to toxic HAB dinoflagellates.
RESUMEN
Clams, razor clams and cockle are intertidal bivalve species collected on foot in the shellfish grounds of the Rías Altas (NW Spain). Spatio-temporal distribution of these bivalves are typically at the expenses of the environmental conditions of the region; however, the responses to the abiotic conditions are poorly understood. Using data from 6 species (Ruditapes decussatus, Venerupis corrugata, Ruditapes philippinarum, Cerastoderam edule, Donax trunculus and Solen marginatus) sampled in 51 intertidal shellfish grounds during 2007 and 2008, we characterized the influence of the environment (temperature, salinity, nutrient salts, suspended organic matter, or sediment granulometry and composition) on the distribution and size of these species through a comparative statistical analysis. Shellfish grounds were grouped according to their sediment and water characteristics revealing a land-ocean gradient and the influence of the geological imprint that separates bivalve grounds from West to East. Statistical models showed that R. decussatus, V. corrugata and R. philippinarum together with C. edule were more abundant in sites combining a strong marine influence with organic-rich finer sediments. However, each of those species also had different environmental niches mostly related to their particular sediment affinities, the proximity to the river mouth, and their physiological tolerances to temperature and salinity. D. trunculus was only found in outer exposed shellfish grounds, while S. marginatus abundance increased in muddy sediments. River distance was a sound descriptor of individual shell length and length variability with contrasting effects on the different species. Furthermore, slopes of length-weight relationships were steeper in autumn than in spring, and this allometry tended to be more positive in sites located closer to the rivers' mouth, which had a higher organic matter C/N ratio. Overall, harvested intertidal bivalves had identifiable environmental preferences that influence their spatial distribution in abundance, body size, and allometric growth.
RESUMEN
In marine ecosystems, temperature regulates the energy metabolism of animals. In the last decades, the temperature increase was related to mass mortality events of marine ectotherms, particularly during high-energy investment for reproduction. In scallops, the mantle has been poorly investigated while this tissue covers more than 40â¯% of the body mass, contributing to the perception of surrounding environmental stimuli. Our aim was to assess the cellular and molecular responses linked to energy metabolism in the mantle of adult N. subnodosus facing acute hyperthermia during reproductive effort. Scallops collected in spring (late gametogenesis) and summer (ripe gonads) were exposed to a control temperature (22⯰C) or acute hyperthermia (30⯰C) for 24â¯h. In spring, increased arginine kinase (AK) activity together with increased pyruvate kinase/citrate synthase ratio (PK/CS) suggested an enhanced carbohydrate, pyruvate, and arginine metabolism to maintain the adenylate energy charge (AEC) in the mantle of scallops coping with acute thermal increase. In summer, animals decreased their AEC (5â¯%) and arginine phosphate pool (40â¯%) and increased their anaerobic metabolism as shown by enhanced activities of lactate-dehydrogenase (LDH) and octopine dehydrogenase (ODH), respectively. The abundance of twenty proteins involved in energy metabolism (isocitrate dehydrogenase, ATP synthase subunit ß), protein protection (cognates heat shock protein 70), and cytoskeleton (actins and tubulins) were affected only by season. These results underlie the role of the mantle of N. subnodosus in the seasonal responses of this tissue to thermal fluctuations during reproductive effort with possible implications for the physiological performance of scallops under heat waves in wild or harvest conditions.
RESUMEN
Bivalves possess important ecological and economic values. They have been extensively used as bioindicators for both emerging and classical pollutants in the aquatic environment. This study investigates the levels of trace metals, polycyclic aromatic hydrocarbons (PAHs), and organochlorine pesticides (OCPs), alongside microplastic (MPs), in Tridacna maxima, Paphia textile, and Paratapes undulatus, collected from the Gulf of Suez. This work represents the first investigation of MPs in marine bivalves from the Gulf of Suez. MPs were detected in 72% of the specimens examined and four types of MPs were identified. The metal pollution index indicated that bivalves may have long-term toxic effects on human consumers. The results showed minimal hydrocarbon pollution. Diagnostic ratios indicated a combination of pyrolytic and petrogenic sources, with a notable influence from pyrolytic origins. The risk assessment reflected that the levels of certain trace metals, PAHs, and OCP contaminants could present a low risk to human health.
Asunto(s)
Bivalvos , Monitoreo del Ambiente , Hidrocarburos Clorados , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Egipto , Hidrocarburos Clorados/análisis , Plaguicidas/análisis , Metales/análisis , Microplásticos/análisisRESUMEN
There is growing recognition that the hypoxic regions of the ocean are also becoming more acidic due to increasing levels of global carbon dioxide emissions. The impact of water acidification on marine life is largely unknown, as most previous studies have not taken into account the effects of hypoxia, which may affect how organisms respond to low pH levels. In this study, we experimentally examined the consequences of water acidification in combination with normoxic or hypoxic conditions on cellular immune parameters in Mediterranean mussels. We measured total hemocyte counts in hemolymph, the cellular composition of hemolymph, phagocytosis, reactive oxygen species (ROS) production. General response of the organism was evaluated on the basis of the activity of antioxidant enzymes in the hepatopancreas, as well as respiratory rates over an 8-day exposure period. The mussels were exposed to low pH conditions (7.3), either under normoxic conditions (dissolved oxygen concentration of 8 mg/L) or hypoxic conditions (dissolved oxygen concentration of 2 mg/L). The parameters were assessed at days 1, 3, 6, and 8 of the experiment. Experimental acidification under normoxic conditions reduced THC and ROS production by hemocytes during later stages of exposure, but phagocytic activity (PA) only decreased at day 3 and then recovered. Combined acidification and hypoxia suppressed PA in hemocytes at the beginning of exposure, while hemocyte ROS production and THC decreased by the end of the experiment. The hemolymph cellular composition and activity of antioxidant enzymes were unaffected by acidified conditions under different oxygen regimes, but mussel respiratory rate (RR) decreased with a more significant reduction in oxygen consumption under hypoxia. Mussels showed a relatively high tolerance to acidification in combination with various dissolved oxygen levels, although prolonged acidification exposure led to increased detrimental effects on immunity and metabolism.
RESUMEN
Microplastics (MPs) constitute the predominant plastic type in marine environments. Since they occupy the same size fraction of sediment particles and planktonic organisms they are potentially bioavailable to a broad scope of organisms, such as filter feeders, which are particularly vulnerable to MP ingestion. To understand the potential impact of MPs in filter feeders it is essential to clarify the uptake, accumulation patterns and elimination rates with time of MPs. The aim of this study was to determine the depuration dynamics and accumulation in tissues of mussels Mytilus galloprovincialis exposed during 24 h to different size polystyrene MPs (1 µm and 10 µm), and depurated for a maximum of 7 days (T = 24 h, T = 48 h and T = 7 d). Mussels were chemically digested with KOH 10% and filtered to quantify the number of MP ingested, and they were cryostat sliced for MP localization in tissues. Both MP sizes were quantified in all depuration times, but mussels accumulated significantly higher quantities of 10 µm MP throughout depuration compared to 1 µm MP. A significant decrease was observed after 7 d depuration in mussels exposed to 10 µm. Mussels removed the same amount of 1 and 10 µm MP after 7 days depuration. However, the depuration dynamics differed for each size-MPs and showed to be size-dependent. Most of both size MPs were eliminated in the first 24 h, but 1 µm MP showed to pass faster through the digestive tract than 10 µm MP. MPs of 1 µm and 10 µm were localized mainly in the lumen and a few in the epithelium of the digestive tract (stomach, intestine and digestive gland) during the depuration and in the gills after the exposure; as confirmed by Raman spectroscopy. The usage of chemical digestion and histological analysis as complementary techniques show to be suitable to infer the depuration dynamics of MPs in mussels.
RESUMEN
Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085-bp in mean length from in vitro experiments. Our results introduced novel schemes from six major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered three Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.
RESUMEN
Salinity is a key environmental factor for aquatic organisms for survival, development, distribution, and physiological performance. Salinity fluctuation occurs often in estuary and coastal zones due to weather, tide, and freshwater inflow and thus heavily affects coastal marine aquaculture. The northern quahog Mercenaria mercenaria is an important aquaculture species along the Atlantic coast in the US, but information on the effects of salinity stress on physiological, immunological, and molecular responses is still scarce. The goal of this study was to investigate cellular and molecular responses through challenges of long-term hypo- and hyper-salinities in northern quahogs. The objectives were to: 1) measure the survival of market-sized quahogs under a three-month salinity challenge at 15 (hyposalinity), 25 (control), and 35 ppt (hypersalinity); 2) determine cellular changes of hemocytes through analysis of immune functions; 3) determine changes of the total free amino acid concentration in gills, and 4) evaluate the molecular responses in gills using RNAseq technology with qPCR verification. After a three-month salinity challenge, no mortality was observed, and increases in body weight were identified with a significantly higher increase in the hypersalinity group. Northern quahogs equilibrated their hemolymph osmolality with the ambient seawater and were verified to be osmoconformers. Significant differences were observed in total hemocyte concentration, lysosomal presence, ROS production, and phagocytic rate, but no differences were found in cell viability. The total free amino acid concentration within gills was positively correlated to water salinity, indicating amino acids were critical organic osmolytes. The transcriptome of gills using RNAseq revealed differential expression genes (DEG) encoding amino acid transporters (SLC6A3, SLC6A6, SLC6A13, SLC25A38), ion channel proteins (T38B1, GluCl, ATP2C1), and water channel protein (AQP8) in hyposalinity or/and hypersalinity groups, indicating these genes play critical roles in intracellular isosmotic regulation. Overall, the findings in this study provided new insights into osmoregulation in northern quahogs.
RESUMEN
The Western Mediterranean coast is under the influence of anthropogenic pressures, including land use, increasing amounts of dangerous waste and habitat destruction. In 2021, the French RINBIO network (http://www.ifremer.fr/envlit/) originally dedicated to assess chemical contamination in the region, focused on biological effects produced by contaminants and the interaction with natural variability in mussels using an active caging strategy. Cell and tissue level biomarkers were applied for 17 sampling sites divided in three sub-regions categorized by different environmental conditions. Results provide critical information for ecosystem health assessment using mussels as sentinel species in the Western Mediterranean Sea. The influence of natural and confounding factors (trophic condition, reproductive cycle, caging strategy), on biological responses to mild chemical contamination, was discussed and discriminated for health status assessment. Results provide valuable data available as reference values for the assessment of biomarkers and histopathological alterations for large-scale active biomonitoring campaigns in the Western Mediterranean Sea.
Asunto(s)
Monitoreo Biológico , Biomarcadores , Monitoreo del Ambiente , Contaminantes Químicos del Agua , Mar Mediterráneo , Animales , Monitoreo Biológico/métodos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Bivalvos , Ecosistema , Especies CentinelaRESUMEN
This study investigated the regional, seasonal, and species abundance and characteristics of microplastics (MPs) in bivalves from Qingdao, China and assessed the dietary exposure of MPs through bivalve consumption. The average abundance was 1.17 ± 1.07 items/individual or 0.17 ± 0.22 items/g wet weight. Fiber was the dominant shape (91.5 %). The average size of MPs was 995.63 ± 796.59 µm. Rayon, PE, and PET contributed mostly to the MPs composition. There were no significant regional or seasonal differences in MPs abundance (p > 0.05), while there were significant species differences (p < 0.05) when describing the abundance by wet weight. The estimated daily intakes of MPs through bivalve consumption by general population, consumer only population, and coastal residents in China were 3.32 × 10-3, 0.08, and 0.16 µg/kg BW, respectively. The exposure assessment method by converting the quantity of MPs into mass may facilitate the risk characterization in the future.
Asunto(s)
Bivalvos , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua , Animales , China , Microplásticos/análisis , Contaminantes Químicos del Agua/análisisRESUMEN
A first approximation to the study of learning processes in bivalves is presented. A habituation procedure was developed using the slimy clam Ruditapes decussatus. The percentage of siphon withdrawal when they were exposed to a white light was measured. In Experiment 1, a habituation-discrimination procedure was used to study the stimulus intensity effect (350-lm vs 806â¯lm). Clams exposed to 350-lm showed a faster habituation than those exposed to 806-lm. Experiment 2 studied the effect of stimulus and intertrial interval (ITI) duration using a 2×2 design. Trials lasted 20 or 180â¯seconds, and the ITI lasted 5 or 10â¯minutes. A combined effect of these two parameters was obtained. Habituation was faster in clams exposed to 180-sec trials with a 5-min ITI. Finally, in Experiment 3 clams were trained with five blocks of five trials with a 5-min ITI. Groups differed on trial duration (20 or 180â¯s). The results showed a general spontaneous recovery effect that was more pronounced for the 180â¯s group. Also, it was found in this experimental condition a reduced response 24â¯hours after finishing training (long-term habituation). Altogether, this series of experiments constitutes a first systematic demonstration of habituation in bivalves.
RESUMEN
Mussels are commonly used as bioarchives in environmental monitoring, yet the impact of vital effects on the trace element or isotope ratios used as biogeochemical proxies is often only ill constrained. A prime example of such trace elements are the Rare Earth elements and Yttrium (REY) which have become (micro)contaminants in freshwater systems worldwide. We here report on the distribution of REY in different soft tissues and in the shells of freshwater bivalve A. anatina, commonly known as "duck mussel", from the Danube River in Hungary and the Vistula River in Poland. Both rivers are contaminated with anthropogenic Gd from contrast agents used in magnetic resonance imaging (MRI). Regardless of the mussels' origin, all of their compartments show very similar shale-normalised REY patterns. None of the samples show any anthropogenic Gd anomaly, implying that in freshwater anthropogenic Gd from MRI contrast agents is either not bioavailable or that REY from ambient river water are insignificant for the REY budget of freshwater mussels. Compared to ambient water, the bivalves bioaccumulate the REY with preferential uptake of Ce and of light REY over heavy REY. However, REY concentrations in mussels are similar to or lower than those in their potential food source, with minor fractionation along the REY series besides slight preferential uptake of La and Y. Comparison of shells and tissues reveals the systematic oxidative decoupling of Ce from its REY neighbours, probably due to the presence of Ce(IV) solution-complexes in the mussels' extrapallial fluid. Despite possible REY fractionation during their initial uptake, vital effects do not impose any major control on REY fractionation during REY transfer within the mussels or during formation of their shells. Mussel shells may, therefore, conveniently be used for environmental monitoring of REY without major disturbance from vital effects.
Asunto(s)
Exoesqueleto , Bivalvos , Monitoreo del Ambiente , Agua Dulce , Metales de Tierras Raras , Contaminantes Químicos del Agua , Itrio , Animales , Itrio/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Bivalvos/metabolismo , Metales de Tierras Raras/análisis , Agua Dulce/química , Polonia , Exoesqueleto/química , Exoesqueleto/metabolismo , Hungría , Ríos/química , Fraccionamiento QuímicoRESUMEN
Sessile intertidal organisms live in a harsh environment with challenging environmental conditions and increasing anthropogenic pressure such as microplastic (MP) pollution. This study focused on effects of environmentally relevant MP concentrations on the metabolism of intertidal Pacific oyster Crassostrea gigas, and its potential MP-induced vulnerability to warming during midday low tide. Oysters experienced a simulated semidiurnal tidal cycle based on their natural habitat, and were exposed to a mixture of polystyrene microbeads (4, 7.5 and 10⯵m) at two environmentally relevant concentrations (0.025⯵gâ¯L-1 and 25⯵gâ¯L-1) for 16 days, with tissue samplings after 3 and 12 days to address dose-dependent effects over time. On the last day of exposure, the remaining oysters were additionally exposed to low tide warming (3 °C h-1) to investigate possible MP-induced susceptibility to aerial warming. Metabolites of digestive gland and gill tissues were analysed by using untargeted 1H nuclear magnetic resonance (NMR) based metabolomics. For the digestive gland metabolite profiles were comparable to each other independent of MP concentration, exposure time, or warming. In contrast, gill metabolites were significantly affected by high MP exposure and warming irrespective of MP, initiating the same cellular stress response to counteract induced oxidative stress. The activated cascade of antioxidant defence mechanisms required energy on top of the general energy turnover to keep up homeostasis, which in turn may lead to subtle, and likely sub-lethal, effects within intertidal oyster populations. Present results underline the importance of examining the effects of environmentally relevant MP concentrations not only alone but in combination with other environmental stressors.
Asunto(s)
Crassostrea , Microplásticos , Contaminantes Químicos del Agua , Animales , Crassostrea/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Branquias/efectos de los fármacos , Branquias/metabolismo , Olas de Marea , Monitoreo del Ambiente , MetabolómicaRESUMEN
Microplastics have become major pollutants in the marine environment and can accumulate in high concentrations, especially in the gut of marine organisms. Unlike other seafood, bivalves are consumed whole, along with their digestive systems, resulting in the transfer of microplastics to humans. Therefore, there is an urgent need to review the status of microplastic pollution in marine bivalves. In this context, this article provides a comprehensive review of the status of microplastic pollution in marine bivalves and the impact of microplastics on the physiology and immunology of marine bivalves. In general, marine bivalves can accumulate high levels of microplastics in a tissue-specific manner. Although microplastic pollution does not cause mortality in bivalves, it can adversely affects bivalves' immunity, byssus production, and reproduction, potentially affecting bivalve populations. This article provides important information that will aid establishing management measures and determining the direction of future research.
RESUMEN
Yersinia enterocolitica (Ye) is a foodborne pathogen isolated from humans, food, animals, and the environment. Yersiniosis is the third most frequently reported foodborne zoonosis in the European Union. Ye species are divided into six biotypes 1A, 1B, 2, 3, 4, and 5, based on biochemical reactions and about 70 serotypes. Biotype 1A is non-pathogenic, 1B is highly pathogenic, and biotypes 2-5 have moderate or low pathogenicity. The reference analysis method for detecting pathogenic Ye species underestimates the presence of the pathogen due to similarities between Yersinia enterocolitica-like species and other Yersiniaceae and/or Enterobacteriaceae, low concentrations of distribution pathogenic strains and the heterogeneity of Yersinia enterocolitica species. In this study, the real-time PCR method ISO/TS 18867 to identify pathogenic biovars of Ye in bivalve molluscs was validated. The sensitivity, specificity and accuracy of the molecular method were evaluated using molluscs experimentally contaminated. The results fully agree with those obtained with the ISO 10273 method. Finally, we evaluated the presence of Ye in seventy commercial samples of bivalve molluscs collected in the Gulf of Naples using ISO/TS 18867. Only one sample tested resulted positive for the ail gene, which is considered the target gene for detection of pathogenic Ye according to ISO/TS 18867. Additionally, the presence of the ystB gene, used as target for Ye biotype 1A, was assessed in all samples using a real-time PCR SYBR Green platform. The results showed amplification ystB gene aim two samples.