Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
1.
Med Vet Entomol ; 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388259

RESUMEN

The ability to determine when ticks last fed and assign them to a specific feeding cohort is important in attempts to explain their population dynamics; the biochemical measurement of stored lipid, has been widely used for this purpose. However, when relating feeding history to behaviour or infection status, a non-destructive approach to its assessment would be of value and, to this end, previous studies have attempted to use morphometric indices. Within any instar, the sclerotised scutal components of the body will not vary with increasing starvation while the alloscutal components will, and the resulting ratio should provide a measure of time since feeding. Here, the aim was to determine whether such a morphological ratio (described here as the hunger index) changed predictably with starvation in Ixodes ricinus L. (Ixodida: Ixodidae). For this a cohort of 300 I. ricinus nymphs was collected from the field in February 2021 and starved in a humidified incubator at 15°C and 80% relative humidity (RH). Every 2 weeks, 50 nymphs selected at random were removed and killed by freezing; morphometric measurement was followed by the measurement of lipid using a standard spectrophotometric approach. Both hunger index and stored lipid changed significantly with increasing starvation and were positively correlated with each other. However, the change in morphometric ratio was relatively slight (11%) over 9 weeks and the variation was high. The data suggest therefore that morphological measurements could be used to provide, at best, only broad categorisation of the hunger status of individual I. ricinus ticks in the field.

2.
Parasitol Res ; 123(10): 355, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39422781

RESUMEN

Recent work has demonstrated that exposure to artificial light at night (ALAN) may alter mosquito feeding behavior and so must be considered a moderator of vector-borne disease transfer. Anopheles funestus mosquitoes are a primary malaria vector in sub-Saharan Africa, but no study to date has tested the impact of ALAN on their feeding behavior. Here we test if the exposure to commonly used household lights (compact fluorescent lights, light-emitting diodes, and incandescent lights) alters Anopheles funestus feeding. Mated, unfed female mosquitoes were exposed to a light treatment, at the onset of darkness, followed by a blood-feeding assay. The light treatments consisted of a 30-min light pulse of one of the three household lights, each in individual experimental containers, versus controls. All three household lights resulted in a reduction in the percentage of females taking a blood meal, but only mosquitoes exposed to incandescent light showed a statistically significant reduction in feeding of 19.6% relative to controls which showed a 42.8% feeding rate. Our results suggest that exposure to some household lights during the night may have an immediate inhibitory effect on Anopheles funestus feeding. By helping identify which light types lead to a suppression of feeding, the findings of this study could provide insight necessary to design household lights that can help minimize mosquito feeding on humans.


Asunto(s)
Anopheles , Conducta Alimentaria , Luz , Animales , Anopheles/fisiología , Anopheles/efectos de la radiación , Femenino , Mosquitos Vectores/fisiología , Mosquitos Vectores/efectos de la radiación , Control de Mosquitos/métodos , África del Sur del Sahara
3.
Parasit Vectors ; 17(1): 408, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342300

RESUMEN

BACKGROUND: The efficacy of vector control tools depends on the behavior of the vector species. Many studies have sought to determine the feeding behavior of Anopheles mosquitoes in different settings of Ethiopia. We have performed a systematic review aimed to generate pooled evidence on the overall and species-specific blood meal sources of Anopheles mosquitoes in Ethiopia. METHODS: A search for relevant articles was performed in two electronic databases (PubMed and Science Direct) and three search engines (Google Scholar, Research Gate and Google) between 11 March and 2 April 2024. Following the initial identification of articles, we used EndNote X8 software and removed duplicate articles and screened the remaining articles by careful reading of their titles and abstracts. The full text of articles that passed this screening phase was retrieved, read and evaluated against predetermined selection criteria. The final decision for inclusion in the systematic review was made after a methodological quality check using the JBI critical appraisal checklist. All relevant data were extracted from tables, figures and texts of the included articles using a premade template in Excel, and the data were analyzed using Stata version 14 software. RESULTS: Of the 2431 studies identified, 27 met the inclusion criteria; all were published between 1997 and 2024. At 215 data points (frequency of tests of each Anopheles species by location and method of mosquito collections), 18,771 Anopheles mosquitoes belonging to 23 species or species complexes were tested for blood meal sources. The commonest sources of blood meals for Anopheles mosquitoes were bovine (36.0%, n = 6758) and human (29.4%, n = 5520). Among the tested anophelines, Anopheles (An.) arabiensis accounted for 67.9% (n = 12,741), followed by An. pharoensis, An. demeilloni and An. stephensi at 10.0%, 5.6% and 4.4%, respectively. Overall, there was no difference in the mean proportion of An. arabiensis detected with domestic animal blood (33.4%, 95% confidence interval [CI] 32.4-34.4%) and those detected with human blood (31.8%, 95% CI 30.9-32.8%). However, a greater proportion of the outdoor collected An. arabiensis were found to feed on bovines (47.9%, 95% CI 35.3-60.6) compared to humans (12.9%, 95% CI 0.8-24.9, P < 0.01). The foraging ratio (FR), which accounts for host availability, was greater for bovines (FR = 0.7) than for humans (FR = 0.2) for An. arabiensis, indicating preferential feeding on bovine hosts. This host preference was supported by the host preference index (human:bovine = 0.4). Anopheles pharoensis was detected with a slightly higher human blood index (53.5%, n = 1005) compared to bovine blood index (45.2%, n = 849). In contrast, An. demeilloni, An. coustani and An. marshalli were detected with a higher bovine blood index. Recently invaded urban malaria vector, An. stephensi was found with a higher ovine blood index. CONCLUSIONS: Bovine and human hosts are common sources of a blood meal for Anopheles mosquitoes. In terms of host availability, An. arabiensis showed preferential feeding on bovines/cattle. Targeting domestic animals, bovines and ovines with endectocides could supplement current vector control interventions. STUDY REGISTRATION: The protocol of this study was registered on the International Prospective Register of Systematic Reviews, registration no. CRD42024515725.


Asunto(s)
Anopheles , Conducta Alimentaria , Mosquitos Vectores , Animales , Anopheles/fisiología , Etiopía , Mosquitos Vectores/fisiología , Humanos , Bovinos , Malaria/transmisión , Malaria/prevención & control
4.
Vet Parasitol ; 332: 110300, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39270602

RESUMEN

Hippoboscid flies (Diptera: Hippoboscidae) are obligate bloodsucking ectoparasites of animals. In Europe, limited research has been conducted on this family until the recent introduction of the deer ked Lipoptena fortisetosa Maa, 1965. A new species of the genus Lipoptena, Lipoptena andaluciensis sp. nov., was found in southern Spain after extensive sampling with carbon-dioxide baited suction traps. A total of 52 females and 32 males were collected at 29 out of 476 sites examined over eight months in 2023. Lipoptena andaluciensis sp. nov. was characterized morphologically and molecularly. The new Lipoptena species can be differentiated from the closely related L. fortisetosa by size, chaetotaxy of the dorsal and ventral thorax, abdominal plates, and genitalia. Based on DNA-barcoding, our specimens showed the highest similarity with Melophagus ovinus (Linnaeus, 1758) (88.4 %) and with L. fortisetosa (86-88 %). Individual screening of Lipoptena specimens (n = 76) for seven important zoonotic pathogens such as bacteria (Anaplasmataceae family: Bartonella spp., Borrelia spp., Coxiella burnetii and Rickettsia spp.) and protozoans (Babesia spp. and Theileria spp.) by conventional PCR and RT-PCR was performed. DNA of C. burnetii was detected in one specimen, while two other specimens harboured Anaplasmataceae (Wolbachia spp., 100 % homology and another endosymbiont probably related to Arsenophonus sp., 95.3 % homology, respectively), all representing the first records of these bacteria in the Lipoptena spp. from Europe. Carbon dioxide traps probed its effectiveness as a reliable passive method for keds surveillance. Our study highlights the existence of a new Lipoptena species, presumably widely distributed in southern Spain. The role of this species in the transmission cycle of pathogens of medical-veterinary relevance needs to be considered in the area.

5.
Med Vet Entomol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324995

RESUMEN

We explored how the ratio of blood-feeding behaviour-nonfeeding, bird feeding (ornithophily) and mammal feeding (mammalophily)-and voltinism (univoltine and multivoltine) vary over a latitudinal gradient from Alaska to Florida. These two fixed species traits were divided into five mutually exclusive combinations of trait states-nonfeeding/univoltine, ornithophilic/univoltine, mammalophilic/univoltine, ornithophilic/multivoltine and mammalophilic/multivoltine-within each of three datasets (north, east and west). We found a significant association between location (north, east and west) and trait state, which was driven by the large percentage of nonfeeding females in the north. When this trait state was removed, no significant differences were found for the remaining trait states and locations. Although the distribution of trait states did not differ between east and west datasets, the distribution with relation to 1° changes in latitude within each of these datasets showed distinct differences. In the east, both ornithophilic/univoltine and mammalophilic/univoltine species significantly increased with latitude, in proportion to the total species present. In contrast, the proportion of mammalophilic/multivoltine species decreased as latitude increased. Ornithophilic/multivoltine species in the east and the trait states in the west did not show any significant relationship to latitude.

6.
Insects ; 15(9)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39336684

RESUMEN

Research into mosquito-borne illnesses faces hurdles because feeding fresh animal blood to rear female mosquitoes presents logistical, economic, and safety challenges. In this study, a shelf-stable additive (spray-dried porcine blood; SDPB) hypothesized to supply accessible hemoglobin was evaluated within an alternative meal (AM) containing whey powder and PBS for rearing the yellow fever mosquito Aedes aegypti. LC-MS/MS proteomics, microbial assays, and particle reduction techniques confirmed and characterized the functionality of hemoglobin in SDPB, while engorgement, fecundity, egg viability, and meal stability bioassays assessed AM performance. Chemical assays supported hemoglobin as the phagostimulant in SDPB with aggregates partially solubilized in the AM that can be more accessible via particle reduction. Unpaired two-tailed t-tests indicate that the AM stimulates oogenesis (t11 = 13.6, p = 0.003) and is stable under ambient (1+ y; t12 = 0.576, p = 0.575) and aqueous (14 d; t12 = 0.515, p = 0.639) conditions without decreasing fecundity. Egg hatch rates for the ninth generation of AM-reared Ae. aegypti were 50-70+%. With further development, this meal may serve as a platform for mass rearing or studying effects of nutritional additives on mosquito fitness due to its low cost and stability. Future work may examine tuning spray drying parameters and resulting impacts on hemoglobin agglomeration and feeding.

7.
Vet Med Sci ; 10(5): e1580, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39171609

RESUMEN

Mosquitoes and sandflies exhibit a wide range of blood feeding patterns, targeting a wide range of vertebrate species, including birds, mammals, reptiles, and amphibians, for proteins vital for egg development. This broad host range increases the opportunity for them to acquire pathogens of numerous debilitating-and-fatal diseases from various animal reservoirs, playing a significant role in disease crossover between animals and humans, also known as zoonotic transmission. This review focuses on the intricate blood-feeding habits of these dipteran vectors, their sensory systems and the complex dance between host and pathogen during disease transmission. We delve into the influence of blood sources on pathogen spread by examining the insect immune response and its intricate interplay with pathogens. The remarkable sense of smell guiding them towards food sources and hosts is explored, highlighting the interplay of multiple sensory cues in their navigation. Finally, we examine the challenges in mosquito control strategies and explore innovations in this field, emphasizing the need for sustainable solutions to combat this global health threat. By understanding the biology and behaviour of these insects, we can develop more effective strategies to protect ourselves and mitigate the burden of vector-borne diseases.


Asunto(s)
Culicidae , Conducta Alimentaria , Psychodidae , Animales , Conducta Alimentaria/fisiología , Psychodidae/fisiología , Culicidae/fisiología , Mosquitos Vectores/fisiología , Humanos , Insectos Vectores/fisiología
8.
Insect Mol Biol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105593

RESUMEN

Mosquitoes such as Aedes aegypti must consume a blood meal for the nutrients necessary for egg production. Several transcriptome and proteome changes occur post-blood meal that likely corresponds with codon usage alterations. Transfer RNA (tRNA) is the adapter molecule that reads messenger RNA codons to add the appropriate amino acid during protein synthesis. Chemical modifications to tRNA enhance codon decoding, improving the accuracy and efficiency of protein synthesis. Here, we examined tRNA modifications and transcripts associated with the blood meal and subsequent periods of vitellogenesis in A. aegypti. More specifically, we assessed tRNA transcript abundance and modification levels in the fat body at critical times post blood-feeding. Based on a combination of alternative codon usage and identification of particular modifications, we discovered that increased transcription of tyrosine tRNAs is likely critical during the synthesis of egg yolk proteins in the fat body following a blood meal. Altogether, changes in both the abundance and modification of tRNA are essential factors in the process of vitellogenin production after blood-feeding in mosquitoes.

9.
J Med Entomol ; 61(5): 1214-1221, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39001615

RESUMEN

Directly involved in the "suck-and-spit" physiology, female mosquito salivary glands (SGs) primarily imbibe blood for egg development and release anticoagulants to keep blood flowing. Indirectly involved, mosquitoes can uptake arboviruses during blood feeding from a viremic host. This research examined the presence of the filamentous cytoplasmic contractile protein (F-actin) and heparan sulfate proteoglycan (HSPG), in the female mosquito SGs. Immunofluorescent antibody labeling of actin molecules or HSPG combined with anatomy suggests that F-actin forms a network in the SG lobe parenchymal cells attached to intralobar ducts by HSPG. In addition, F-actin twists around intralobar SG ducts in a beaded manner, altogether involved in the expulsion of SG secretions. This arrangement in female Aedes aegypti SGs, suggests that F-actin structures are integrally involved in transmitting infectious agents into hosts.


Asunto(s)
Actinas , Aedes , Proteoglicanos de Heparán Sulfato , Glándulas Salivales , Animales , Glándulas Salivales/metabolismo , Femenino , Aedes/metabolismo , Actinas/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo
10.
Vet Parasitol ; 331: 110255, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39084102

RESUMEN

Haemonchus contortus is a parasitic nematode of ruminants. Once inside its host, it is exposed to reactive oxidative species and responds by synthesising antioxidant enzymes as a defence. In Caenorhabditis elegans, antioxidant genes are regulated by the transcription factor skinhead-1 (Cel-SKN-1). However, there is little information about the function of SKN-1 in H. contortus (Hco-SKN-1). Therefore, we performed a molecular investigation to characterise Hco-SKN-1 and its putative relationship with genes encode antioxidant enzymes, namely glutathione S-transferases (Hco-GSTs, n = 3), superoxide dismutase (Hco-SOD) and catalase (Hco-CAT), which are involved in haematophagy and defence against the host. We used in silico sequence analysis of Hco-SKN-1 and Hco-GSTs to design and perform relative expression assays involving H. contortus eggs, infective larvae (L3) and adults. Furthermore, we exposed H. contortus transitional infective larvae (xL3) to erythrocytes or hydrogen peroxide (H2O2) and evaluated the relative expression of antioxidant genes at 24 or 48 h. Gene Ontology (GO) analysis revealed 31 functions associated with Hco-SKN-1 and Hco-GSTs, including stress resistance, larval development and the active immune response. Hco-GST-5957 and Hco-SOD showed the highest expression in adults, indicating a relationship with specific functions at this mature stage. xL3 exposed to erythrocytes or H2O2 showed significant upregulation of Hco-SKN-1, but it occurred after upregulation of the antioxidant genes, indicating that these genes are not regulated by Hco-SKN-1 during the blood-feeding stage. Additional investigation is necessary to understand the putative regulation of antioxidant genes by Hco-SKN-1 during the blood-feeding stage.


Asunto(s)
Antioxidantes , Glutatión Transferasa , Haemonchus , Factores de Transcripción , Animales , Haemonchus/genética , Haemonchus/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Antioxidantes/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Larva/genética , Hemoncosis/veterinaria , Hemoncosis/parasitología , Catalasa/genética , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
11.
Adv Exp Med Biol ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38954247

RESUMEN

According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.

12.
J Nematol ; 56(1): 20240022, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38846324

RESUMEN

Mermithidae is a family of nematodes that parasitize a wide range of invertebrates worldwide. Herein, we report nematodes that were unexpectedly found in three of 486 adult stable flies (Stomoxys calcitrans) captured from three farms (F1, F2, and F3) in different regions of Gifu Prefecture, Japan. We aimed to characterize these nematodes both at the morphological and molecular level. Morphological studies revealed that the nematodes were juveniles of Mermithidae. Phylogenetic analysis based on 18S and 28S rDNA indicated that the mermithids from farms F1 and F2 could be categorized into the same cluster as Ovomermis sinensis and Hexamermis sp., whereas the mermithid from farm F3 clustered with Amphimermis sp. Additionally, these mermithids could be categorized within the same clusters as related mermithids detected in Japan that parasitize various arthropod orders. Our findings suggest that these stable flies may have been parasitized by mermithids already present in the region and that genetically distinct species of mermithids occur across Japan. To the best of our knowledge, this is the first report of mermithids parasitizing adult stable flies in Japan.

13.
Cell Rep ; 43(7): 114354, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38906147

RESUMEN

Female mosquitoes engage in blood feeding from their hosts to facilitate egg maturation but cease feeding once a sufficient blood meal has been acquired. Abdominal distention has been proposed as a contributing factor; however, it has also been suggested that there are chemical controls. In this study, we focus on negative chemical regulators of blood feeding, particularly those present in the host blood. Serum derived from animal blood inhibits the feeding of ATP, a phagostimulant of blood feeding in Aedes aegypti. Fibrinopeptide A (FPA), a 16-amino acid peptide cleaved from fibrinogen during blood coagulation, serves as an inhibitory factor in the serum. Our findings suggest that blood-feeding arrest in female mosquitoes is triggered by the detection of FPA in the host blood, which increases as blood coagulation proceeds in the mosquito's midgut, highlighting the role of host-derived substances as negative regulators of mosquito behavior.


Asunto(s)
Aedes , Animales , Aedes/fisiología , Femenino , Conducta Alimentaria , Fiebre Amarilla/transmisión , Mosquitos Vectores
14.
Bio Protoc ; 14(11): e4996, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38873019

RESUMEN

Many studies on mosquito biology rely on laboratory-reared colonies, emphasizing the need for standardized protocols to investigate critical aspects such as disease biology, mosquito behavior, and vector control methods. While much knowledge is derived from anthropophilic species from genera like Anopheles, Aedes, and Culex, there is a growing interest in studying mosquitoes that feed on non-human hosts. This interest stems from the desire to gain a deeper understanding of the evolution of diverse host range use and host specificity. However, there is currently a limited number of comprehensive protocols for studying such species. Considering this gap, we present a protocol for rearing Uranotaenia lowii, a mosquito species specialized in feeding on anuran amphibians by eavesdropping on host-emitted sound cues. Additionally, we provide instructions for successfully shipping live specimens to promote research on this species and similar ones. This protocol helps fill the current gap in comprehensive guidelines for rearing and maintaining colonies of anuran host-biting mosquitoes. It serves as a valuable resource for researchers seeking to establish colonies of mosquito species from the Uranotaeniini tribe. Ultimately, this protocol may facilitate research on the evolutionary ecology of Culicidae, as this family has recently been proposed to have originated from a frog-feeding ancestor. Key features • Rearing and maintenance of colonies of non-human host-biting mosquitoes that feed on frogs using host-emitted acoustic cues. • Provides shipping guidelines aimed to enhance the establishment of colonies by new research groups and specimen exchanges between labs.

15.
J Wildl Dis ; 60(3): 621-633, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38769632

RESUMEN

Although wild bird rehabilitation facilities are important for the conservation of wild species, individuals may be kept within the facilities for long periods, consequently posing a risk for the bird to be infected with pathogens to which they are not naturally exposed. In turn, novel pathogens may be introduced through rescued migratory species. Avian malaria and West Nile fever are important avian diseases transmitted by mosquitoes. To understand the transmission dynamics of such diseases at rehabilitation facilities, the ecology of vector mosquitoes, including species composition, seasonality, and feeding behaviors, were explored. Mosquitoes were collected at a wild bird rehabilitation facility and wildlife sanctuary in Japan from 2019 to 2020 using mouth aspirators, sweep nets, and light traps. A total of 2,819 mosquitoes of 6 species were captured, all of which are potential vectors of avian diseases. Culex pipiens pallens and Cx. pipiens form molestus were the dominant species (82.9% of all collected mosquitoes). Density and seasonality differed between sampling locations, presumably because of differences in mosquito behaviors including feeding preferences and responses to climatic factors. Blood-fed Culex mosquitoes fed solely on birds, and many mosquito species are thought to have fed on birds within the facility. Particularly, Cx. pipiens group probably fed on both rescued and free-living birds. The rehabilitation facility may be an important site for the introduction and spread of pathogens because 1) numerous mosquitoes inhabit the hospital and its surroundings; 2) blood-fed mosquitoes are caught within the hospital; 3) there is direct contact between birds and mosquitoes; 4) both birds within the hospital and wild birds are fed upon. Furthermore, blood-fed Cx. pipiens form molestus were observed in the winter, suggesting that pathogens might be transmitted even during the winter when other mosquito species are inactive.


Asunto(s)
Animales Salvajes , Enfermedades de las Aves , Aves , Conducta Alimentaria , Mosquitos Vectores , Animales , Japón/epidemiología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Culicidae/fisiología , Estaciones del Año , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/veterinaria , Fiebre del Nilo Occidental/epidemiología
16.
Vaccines (Basel) ; 12(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38793707

RESUMEN

Proteins present in blood samples from Atlantic salmon (Salmo salar) infected with salmon lice (Lepeophtheirus salmonis) were analyzed using liquid chromatography-high-resolution mass spectrometry. Bioinformatic analyses revealed 1820 proteins, of which 58 were assigned to lice. Among these, peroxiredoxin-2, an antioxidant protein, was found relevant with respect to blood feeding of the parasite. The three-dimensional structure analysis of the protein revealed a surface amino acid sequence of interest. A 13-amino-acid peptide was selected as a potential antigen due to its predicted solubility, antigenicity, probable non-allergenic, and non-toxic nature. This peroxiredoxin-2-derived peptide was synthesized, combined with a commercially available adjuvant, and used for vaccination. The test vaccine demonstrated a 60-70% protection rate against early-stage Lepeophtheirus salmonis infection in a challenge trial in Norway. Additionally, the vaccine was tested against salmon lice (Caligus rogercresseyi) in Chile, where a remarkable 92% reduction in the number of adult lice was observed. Thus, in combination with the selected adjuvant, the peptide showed antigenic potential, making it a suitable candidate for future vaccine development. The approach described holds promise for the development of peptide vaccines against various ectoparasites feeding on blood or skin secretions of their hosts.

17.
Med Vet Entomol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747253

RESUMEN

Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%-22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%-57.1%) and dogs (9.1%-19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%-28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%-45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%-47.4%) with representation of rodent, reptile and livestock blood meals (18.2%-68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%-39.4%) and cows (11.5%-27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%-24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%-76% for Ae. aegypti, 32%-82% for Ae. simpsoni s.l. and 26%-61% for Cx. pipiens s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.

18.
Front Insect Sci ; 4: 1365651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699443

RESUMEN

The female Aedes aegypti mosquito is a vector for several arboviral diseases, due to their blood feeding behavior and their association with urban communities. While ion transport in Ae. aegypti has been studied, much less is known about mechanisms of water transport. Rapid water and ion excretion occurs in the adult female mosquito post blood meal and involves a set of organs including the midgut, Malpighian tubules (MTs), and hindgut. The MTs are responsible for the formation of primary urine and are considered the most important site for active transport of ions. Within the cells of the MTs, along with various ion transporters, there are aquaporin water channels that aid in the transport of water across the tubule cell membrane. Six aquaporin genes have been molecularly identified in Ae. aegypti (AQP1-6) and found to be responsible for the transport of water and in some cases, small solutes such as glycerol. In this study, we used immunohistochemistry to localize AaAQP1, 2, 4, 5, and 6 in the adult female Ae. aegypti, in non-blood fed and post blood feeding (0.5 and 24hr) conditions. We further examined the main water transporting aquaporin, AaAQP1, using western blotting to determine protein abundance changes in isolated MTs pre- and post-blood feeding. Using fluorescence in situ hybridization, aqp1 mRNA was found exclusively in the principal cells of female MTs. Finally, we used immunogold staining with transmission electron microscopy to determine subcellular localization of AaAQP1 in the Malpighian tubules under non-blood fed conditions. Interestingly, AaAQP1 was found to be predominantly in the principal cells of the MTs, dispersed throughout the brush border; however, there was also evidence of some AaAQP1 localization in the stellate cells of the MTs.

19.
Parasit Vectors ; 17(1): 136, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491527

RESUMEN

BACKGROUND: Maintaining mosquito colonies in the laboratory requires a blood supply so that females' oocytes can mature and oviposition can take place. In this study, a new artificial hematophagy system for colonization and maintenance of Culex quinquefasciatus in the laboratory was developed and tested. METHODS: We developed an attractive polymeric biofilm including 25% L-lactic acid for use as a membrane in an artificial hematophagy system and compared the feeding rate of females with Parafilm-M®. We also evaluated the oviposition rate, larval survival and adult emergence of females fed through the attractive biofilm. RESULTS: The average percentage of female Cx. quinquefasciatus fed through the attractive biofilm was 87%, while only 20% became engorged with Parafilm-M® (p < 0.0001). Feeding through the attractive biofilm developed in this study produced high levels of evaluated biological parameters; the percentage of egg laying by females that underwent artificial hematophagy through the biofilm was 90%, with an average of 158 eggs per raft. From these eggs, 97% of the larvae hatched, of which 95% reached the pupal stage. The adult emergence rate corresponded to 93% of pupae. CONCLUSIONS: Insects fed with attractant through the biofilm system had a higher engorgement rate compared to those fed through Parafilm-M®. Our study is preliminary and suggests that polymeric biofilm has great potential for artificially feeding mosquitoes in the laboratory. Based on this research, new studies will be carried out with biofilm and different systems.


Asunto(s)
Culex , Culicidae , Femenino , Animales , Parafina , Óvulo , Oviposición , Larva
20.
J Med Entomol ; 61(2): 367-376, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306459

RESUMEN

We evaluated miRNA and mRNA expression differences in head tissues between avid-biting vs. reluctant-biting Aedes albopictus (Skuse) females from a single population over a 20-min timescale. We found no differences in miRNA expression between avid vs. reluctant biters, indicating that translational modulation of blood-feeding behavior occurs on a longer timescale than mRNA transcription. In contrast, we detected 19 differentially expressed mRNAs. Of the 19 differentially expressed genes at the mRNA level between avid-biting vs. reluctant-biting A. albopictus, 9 are implicated in olfaction, consistent with the well-documented role of olfaction in mosquito host-seeking. Additionally, several of the genes that we identified as differentially expressed in association with phenotypic variation in biting behavior share similar functions with or are inferred orthologues of, genes associated with evolutionary variation in biting behaviors of Wyeomyia smithii (Coq.) and Culex pipiens (Lin.). A future goal is to determine whether these genes are involved in the evolutionary transition from a biting to a non-biting life history.


Asunto(s)
Aedes , Culex , MicroARNs , Femenino , Animales , Olfato , Mosquitos Vectores , Aedes/genética , Culex/genética , Variación Biológica Poblacional , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA