Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Nanomaterials (Basel) ; 14(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39120415

RESUMEN

Solution-based inorganic-organic halide perovskites are of great interest to researchers because of their unique optoelectronic properties and easy processing. However, polycrystalline perovskite films often show inhomogeneity due to residual strain induced during the film's post-processing phase. In turn, these strains can impact both their stability and performance. An exhaustive study of residual strains can provide a better understanding and control of how they affect the performance and stability of perovskite films. In this work, we explore this complex interrelationship between residual strains and electrical properties for methylammonium CH3NH3PbI3-xClx films using grazing incidence X-ray diffraction (GIXRD). We correlate their resistivity and carrier mobility using the Hall effect. The sin2(ψ) technique is used to optimize the annealing parameters for the perovskite films. We also establish that temperature-induced relaxation can yield a significant enhancement of the charge carrier transports in perovskite films. Finally, we also use Raman micro-spectroscopy to assess the degradation of perovskite films as a function of their residual strains.

2.
Nanotechnology ; 35(21)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38364276

RESUMEN

Performance and the stability of the perovskite-based photovoltaic devices are directly linked to existing trap-states or defect profiles at the surface and/or in the bulk of perovskite layers. Hence identification of stemming the defects during perovskite formation is crucial for achieving superior and long-lasting performances. Here, we present the effect of 1-Pentanethiol incorporation into the one-step deposition of perovskite layers. A feasible glove box-free route results in high-quality CH3NH3PbI3layers under highly humid conditions (RH > 50%) but at low temperatures (T< 18 °C). 1-Pentanethiol addition into the washing solvent leads to the refinement of I/Pb stoichiometry, elimination of the iodide deficiencies, and reduction of the trap-state densities. Consequently, a precise amount 1-Pentanethiol addition enhances photovoltaic performances, resulting in a 54% PCE improvement for CH3NH3PbI3-based inverted solar cells.

3.
ACS Appl Mater Interfaces ; 15(47): 54863-54874, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37966314

RESUMEN

CH3NH3PbI3 is capable of exhibiting a superior photoresponse to visible light, but its self-powered devices are typically formed through p-n junctions. In this study, we fabricated a Ag/CH3NH3PbI3/C dual-terminal asymmetric electrode device using a single CH3NH3PbI3 perovskite micro/nanowire, enabling both the photoresponse and self-powered characteristics of CH3NH3PbI3 to visible light. Compared with traditional p-n junction devices, this simple device demonstrates enhanced interface photovoltaic effects by optimizing the combination of the Ag electrode with CH3NH3PbI3, resulting in superior self-powered characteristics. Under low bias voltage, the device achieves a significant on/off ratio of 103, with superior sensitivity and responsivity as well as a maximum rectification ratio of about 12. The photogenerated voltage and current reach approximately 0.8 V and 2 nA, respectively. This simple, compact, and self-powered asymmetric device exhibits great potential for applications in self-powered optoelectronics and wearable devices. This research provides a promising approach for recognizing and utilizing surface state effects in single nanoscale structures.

4.
Biosens Bioelectron ; 237: 115496, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37421798

RESUMEN

In spite of organic-inorganic perovskite emerging as a novel efficient light-harvesting material owing to their superior optical properties, excitonic properties, and electrical conductivity, the related applications are severely limited for their poor stability and selectivity. Herein, we introduced hollow carbon spheres (HCSs) and 2-(perfluorohexyl) ethyl methacrylate (PFEM) based molecularly imprinted polymers (MIPs) to dual-functionalize CH3NH3PbI3. HCSs can provide perovskite load conditions, passivate perovskite defects, increase carrier transport and effectively improve its hydrophobicity. The perfluorinated organic compound based MIPs film can not only enhance the water and oxygen stability of perovskite, but also endow it specific selectivity. Moreover, it can reduce the photoexcited electron-hole pair recombination and prolong the electron lifetime. Benefiting from the synergistic sensitization of HCSs and MIPs, an ultrasensitive photoelectrochemical platform (MIPs@CH3NH3PbI3@HCSs/ITO) for cholesterol sensing was acquired with a very wide linear range of 5.0 × 10-14-5.0 × 10-8 mol/L and an extremely low detection limit of 2.39 × 10-15 mol/L. The designed PEC sensor exhibited good selectivity and stability, as well as practicality for real sample analysis. The present work extended the development of the high-performance perovskite and showed its broad application prospect for advanced PEC construction.


Asunto(s)
Técnicas Biosensibles , Impresión Molecular , Impresión Molecular/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Carbono/química
5.
Materials (Basel) ; 16(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37374514

RESUMEN

Interface engineering of the hole transport layer in CH3NH3PbI3 photodetectors has resulted in significantly increased carrier accumulation and dark current as well as energy band mismatch, thus achieving the goal of high-power conversion efficiency. However, the reported heterojunction perovskite photodetectors exhibit high dark currents and low responsivities. Herein, heterojunction self-powered photodetectors, composed of p-type CH3NH3PbI3 and n-type Mg0.2Zn0.8O, are prepared through the spin coating and magnetron sputtering. The obtained heterojunctions exhibit a high responsivity of 0.58 A/W, and the EQE of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is 10.23 times that of the CH3NH3PbI3/Au photodetectors and 84.51 times that of the Mg0.2ZnO0.8/Au photodetectors. The built-in electric field of the p-n heterojunction significantly suppresses the dark current and improves the responsivity. Remarkably, in the self-supply voltage detection mode, the heterojunction achieves a high responsivity of up to 1.1 mA/W. The dark current of the CH3NH3PbI3/Au/Mg0.2Zn0.8O heterojunction self-powered photodetectors is less than 1.4 × 10-1 pA at 0 V, which is more than 10 times lower than that of the CH3NH3PbI3 photodetectors. The best value of the detectivity is as high as 4.7 × 1012 Jones. Furthermore, the heterojunction self-powered photodetectors exhibit a uniform photodetection response over a wide spectral range from 200 to 850 nm. This work provides guidance for achieving a low dark current and high detectivity for perovskite photodetectors.

6.
Photoacoustics ; 31: 100515, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37252649

RESUMEN

A light-induced thermoelastic spectroscopy (LITES) gas detection method based on CH3NH3PbI3 perovskite-coated quartz tuning fork (QTF) was proposed. By coating CH3NH3PbI3 thin film on the surface of ordinary QTF, a Schottky junction with silver electrodes was formed. The co-coupling of photoelectric effect and thermoelastic effect of CH3NH3PbI3-QTF results in a significant improvement in detection performance. The oxygen (O2) was select as the target analyte for measurement, and experimental results show that compared with the commercial standard QTF, the introduction of CH3NH3PbI3 perovskite Schottky junction increases the 2f signal amplitude and signal-to-noise ratio (SNR) by ∼106 times and ∼114 times, respectively. The minimum detection limit (MDL) of this LITES system is 260 ppm, and the corresponding normalized noise equivalent absorption coefficient (NNEA) is 9.21 × 10-13 cm-1·W·Hz-1/2. The Allan analysis of variance results indicate that when the average time is 564 s, the detection sensitivity can reach 83 ppm. This is the first time that QTF resonance detection has been combined with perovskite Schottky junctions for highly sensitive optical gas detection.

7.
Environ Res ; 228: 115853, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37059326

RESUMEN

Cerium copper metal nanostructures have received extensive attention as promising electrode materials for energy storage applications due to its attractive structure, and good conductivity. Herein, CeO2-CuO nanocomposite was prepared via chemical method. The crystal structure, dielectric, and magnetic properties of the samples were characterized using by different techniques. The morphological properties of samples were inspected by field emission scanning electron microscopy (FE‒SEM) and high-resolution transmission electron microcopy (HR‒TEM) analysis implied an agglomerated with nanorod structure. The sample surface roughness and morphology were inspected using atomic force microscopy (AFM). Electron paramagnetic resonance (EPR) spectroscopy result reveals the oxygen insufficiency in the material. The variation of oxygen vacancies concentration is consistent with the changes of the saturation magnetization for the sample. Dielectric constant and dielectric losses were studied with respect to the temperature from range from 150 to 350 °C. The electrochemical study of CeO2-CuO nanocomposite shows clear oxidation and reduction peaks with covering wide potential range. In this present paper, first time we have demonstrated that the CeO2-CuO composite as an electron transport material (ETM) with copper (I) thiocyanate (CuSCN) as hole transport material (HTM) for the perovskite solar cells device fabrication. To understand the properties of perovskite like structural, optical, and morphological extensive characterizations such as XRD, UV-visible spectroscopy, and FE-SEM, was performed. For the first time, the CeO2-CuO was used as anode material for preparation low-temperature processing perovskite solar cells, results the power conversion efficiency (PCE) of 10.58% was achieved. The improvement in the device performance for the nanocomposite compared to the pure CeO2, due to unique properties of CeO2-CuO, including high hole mobility, good energy level alignment with CH3NH3PbI3 and longer life time of photo-excited carriers for facilitating the developments of industrial-scale perovskite solar cells.


Asunto(s)
Cobre , Nanocompuestos , Cobre/química , Transporte de Electrón , Nanocompuestos/química , Oxígeno
8.
ACS Appl Mater Interfaces ; 14(45): 51066-51083, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36397313

RESUMEN

Herein, we report intriguing observations of an extremely stable nonvolatile bipolar resistive switching (NVBRS) memory device fabricated using HfO2-TiO2 topologically protected by Al2O3 as a stacked base layer for a CH3NH3PbI3 (MAPI) electrolyte layer sandwiched between Ag and fluorine-doped tin oxide (FTO) electrodes. MAPI has been successfully synthesized by a rapid microwave-solvothermal (MW-ST) method within 10 min at 120 °C without requiring any inert gas atmosphere using low-cost precursors and solvents. Subsequently, MAPI powders are dissolved in aprotic solvents (DMF/DMSO = 8:2), and a spin-coated thin film is allowed to recrystallize upon annealing at 120 °C via a solution-based nanoscale self-assembly process. The fabricated memory device with the Ag/MAPI/Al2O3/TiO2-HfO2/FTO configuration shows an enhanced resistance ratio of 105 for >104 s at an extremely lower operating voltage (SET +0.2 V, RESET -0.2 V) when compared to that of the pristine MAPI device (±1 V, 102, 104 s). We show that the memory device also exhibits a remarkable endurance of ≥3500 cycles due to the Al2O3 robust coating on the HfO2-TiO2 layer, facilitating prompt heterojunction formation. Thus, the adopted innovative strategies to prepare structurally and optically stable (∼1.5 years) MAPI under high-humid conditions could offer enhanced performance of NVBRS memory devices for medical, security, internet of things (IoT), and artificial intelligence (AI) applications.

9.
Nanomaterials (Basel) ; 12(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35564108

RESUMEN

In this work, we studied, at low temperature, the coherent evolution of the localized electron and hole spins in a polycrystalline film of CH3NH3PbI3 (MAPI) by using a picosecond-photo-induced Faraday rotation technique in an oblique magnetic field. We observed an unexpected anisotropy for the electron and hole spin. We determined the electron and hole Landé factors when the magnetic field was applied in the plane of the film and perpendicular to the exciting light, denoted as transverse ⟂ factors, and when the magnetic field was applied perpendicular to the film and parallel to the exciting light, denoted as parallel ∥ factors. We obtained |ge,⟂|=2.600 ± 0.004, |ge,∥|=1.604 ± 0.033 for the electron and |gh,⟂|=0.406 ± 0.002, |gh,∥|=0.299 ± 0.007 for the hole. Possible origins of this anisotropy are discussed herein.

10.
Luminescence ; 37(5): 777-783, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35263024

RESUMEN

During the fabrication of lateral-structured photodetectors based on CH3 NH3 PbI3 film, antisolvents represented by toluene are usually used to accelerate the crystallization of perovskite. Using antisolvent not only leads to the formation of shrinkage holes at the bottom of the perovskite layer, but the toxicity of antisolvents would also hinder the industrial preparation of perovskite devices. An antisolvent-free method is a possible solution to avoid these problems. Here, we report a lateral-structured photodetector based on an antisolvent-free method. The lateral photodetector exhibited a high responsivity of 1.75 A⋅W-1 and specific detectivity (D*) of 3.54 × 1012 Jones. In particular, the results indicated that the solvent had an influence on perovskite film morphology, crystallization, and device performance. The prepared CH3 NH3 PbI3 film presented needle-like crystals and low performance with single precursor solvent N,N-dimethylformamide (DMF). In comparison, appropriate mixing of dimethyl sulfoxide (DMSO) could improve the morphology, crystallization, and performance of the film. In addition, the solvent volume ratio of the precursor had a profound effect on the performance of the as-prepared photodetectors. At a DMSO:DMF volume ratio of 5:5, the as-prepared film had massive perovskite crystals and fewer defects, resulting in optimal device performance, which can be explained by Urbach energy.

11.
Philos Trans A Math Phys Eng Sci ; 380(2221): 20210144, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35220768

RESUMEN

Halide perovskite indoor photovoltaics (PV) are a viable solution to autonomously power the billions of sensors in the huge technology field of the Internet of Things. However, there exists a knowledge gap in the hysteresis behaviour of these photovoltaic devices under indoor lighting conditions. The present work is the first experimental study dedicated to exploring the degree of hysteresis in halide perovskite indoor photovoltaic devices by carrying out both transient J-V scan and steady state maximum power point tracking (MPPT) measurements. Dependence of hysteresis on device architecture, selection of electron transporting layers and the composition of the perovskite photoactive layers were investigated. Under indoor illumination, the p-i-n MAPbI3-based devices show consistently high power conversion efficiency (PCE) (stabilized PCE) of greater than 30% and negligible hysteresis behaviour, whereas the n-i-p MAPbI3 devices show poor performance (stabilized PCE ∼ 15%) with pronounced hysteresis effect. Our study also reveals that the n-i-p triple cation perovskite devices are more promising (stabilized PCE ∼ 25%) for indoor PV compared to n-i-p MAPbI3 due to their suppressed ion migration effects. It was observed that the divergence of the PCE values estimated from the J-V scan measurements, and the maximum power point tracking method is higher under indoor illumination compared to 1 Sun, and hence for halide perovskite-based indoor PV, the PCE from the MPPT measurements should be prioritized over the J-V scan measurements. The results from our study suggest the following approaches for maximizing the steady state PCE from halide perovskite indoor PV: (i) select perovskite active layer composition with suppressed ion migration effects (such as Cs-containing triple cation perovskites) and (ii) for the perovskite composition such as MAPbI3, where the ion migration is very active, p-i-n architecture with organic charge transport layers is beneficial over the n-i-p architecture with conventional metal oxides (such as TiO2, SnO2) as charge transport layers. This article is part of the theme issue 'Developing resilient energy systems'.

12.
Adv Sci (Weinh) ; 8(8): 2003993, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33898182

RESUMEN

Piezoresponse force microscopy (PFM), as a powerful nanoscale characterization technique, has been extensively utilized to elucidate diverse underlying physics of ferroelectricity. However, intensive studies of conventional PFM have revealed a growing number of concerns and limitations which are largely challenging its validity and applications. In this study, an advanced PFM technique is reported, namely heterodyne megasonic piezoresponse force microscopy (HM-PFM), which uses 106 to 108 Hz high-frequency excitation and heterodyne method to measure the piezoelectric strain at nanoscale. It is found that HM-PFM can unambiguously provide standard ferroelectric domain and hysteresis loop measurements, and an effective domain characterization with excitation frequency up to ≈110 MHz is demonstrated. Most importantly, owing to the high-frequency and heterodyne scheme, the contributions from both electrostatic force and electrochemical strain can be significantly minimized in HM-PFM. Furthermore, a special measurement of difference-frequency piezoresponse frequency spectrum (DFPFS) is developed on HM-PFM and a distinct DFPFS characteristic is observed on the materials with piezoelectricity. By performing DFPFS measurement, a truly existed but very weak electromechanical coupling in CH3NH3PbI3 perovskite is revealed. It is believed that HM-PFM can be an excellent candidate for the ferroelectric or piezoelectric studies where conventional PFM results are highly controversial.

13.
Front Chem ; 9: 632021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842430

RESUMEN

Indoor photovoltaics (IPVs) are receiving great research attention recently due to their projected application in the huge technology field of Internet of Things (IoT). Among the various existing photovoltaic technologies such as silicon, Cadmium Telluride (CdTe), Copper Indium Gallium Selenide (CIGS), organic photovoltaics, and halide perovskites, the latter are identified as the most promising for indoor light harvesting. This suitability is mainly due to its composition tuning adaptability to engineer the bandgap to match the indoor light spectrum and exceptional optoelectronic properties. Here, in this review, we are summarizing the state-of-the-art research efforts on halide perovskite-based indoor photovoltaics, the effect of composition tuning, and the selection of various functional layer and device architecture onto their power conversion efficiency. We also highlight some of the challenges to be addressed before these halide perovskite IPVs are commercialized.

14.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562608

RESUMEN

Solution-processed organometal halide perovskites (OMHPs) have been widely used in optoelectronic devices, and have exhibited brilliant performance. One of their generally recognized advantages is their easy fabrication procedure. However, such a procedure also brings uncertainty about the opto-electric properties of the final samples and devices, including morphology, stability, coverage ratio, and defect concentration. Normally, one needs to find a balanced condition, because there is a competitive relation between these parameters. In this work, we fabricated CH3NH3PbI3 films by carefully changing the ratio of the PbI2 to CH3NH3I, and found that the stoichiometric and solvent engineering not only determined the photoluminescence efficiency and defects in the materials, but also affected the photostability, morphology, and coverage ratio. Combining solvent engineering and the substitution of PbI2 by Pb(Ac)2, we obtained an optimized fabrication condition, providing uniform CH3NH3PbI3 films with both high photoluminescence efficiency and high photostability under either I-rich or Pb-rich conditions. These results provide an optimized fabrication procedure for CH3NH3PbI3 and other OMHP films, which is crucial for the performance of perovskite-based solar cells and light emitting devices.

15.
Ecotoxicol Environ Saf ; 208: 111677, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396009

RESUMEN

CH3NH3PbI3 is one of the most widely studied and most promising photoelectric conversion materials for large-scale application. However, once it is discharged into the aquatic environment, it will release a variety of lethal substances to the aquatic organisms. Herein, two typical aquatic pollution indicators, Scenedesmus obliquus (a typical phytoplankton) and Daphnia magna (a typical zooplankton), were used to assess the acute effects of CH3NH3PbI3 perovskite on aquatic organisms. The results showed that, when the initial CH3NH3PbI3 perovskite level (CPL) was 40 mg L-1 or higher, the growth of S. obliquus would be remarkably inhibited with significant decreases of chlorophyll content and protein content. And when the CPL was over 5 mg L-1, the survival of D. magna would be notably threatened. Specifically, the 72 h EC-50 of CH3NH3PbI3 perovskite to S. obliquus was calculated as 37.21 mg L-1, and the 24 h LC-50 of this perovskite to D. magna adults and neonates were calculated as 37.53 mg L-1 and 18.55 mg L-1, respectively. Moreover, remarkably solution pH declination and large amounts of lead bio-accumulation was observed in the both acute experiments, which could be the main reasons causing the above acute effects. Considering the strong acute effects of these CH3NH3PbI3 perovskite materials and their attractive application prospect, more attentions should be paid on their harmness to the environment.


Asunto(s)
Compuestos de Calcio/toxicidad , Daphnia/efectos de los fármacos , Plomo/toxicidad , Metilaminas/toxicidad , Óxidos/toxicidad , Scenedesmus/efectos de los fármacos , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Compuestos de Calcio/química , Humanos , Plomo/química , Metilaminas/química , Óxidos/química , Propiedades de Superficie , Titanio/química , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/química
16.
Nanomaterials (Basel) ; 11(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467057

RESUMEN

In this study, we demonstrate Sn-assisted vapor-liquid-solid (VLS) growth of lead iodide (PbI2) nanowires with van der Waals layered crystal structure and subsequent vapor-phase conversion into methylammonium lead iodide (CH3NH3PbI3) perovskites. Our systematic microscopic investigations confirmed that the VLS-grown PbI2 nanowires display two major growth orientations of [0001] and [1¯21¯0], corresponding to the stacking configurations of PbI2 layers to the nanowire axis (transverse for [0001] vs. parallel for [1¯21¯0]). The resulting difference in the sidewall morphologies was correlated with the perovskite conversion, where [0001] nanowires showed strong localized conversion at top and bottom, as opposed to [1¯21¯0] nanowires with an evenly distributed degree of conversion. An ab initio energy calculation suggests that CH3NH3I preferentially diffuses and intercalates into (112¯0) sidewall facets parallel to the [1¯21¯0] nanowire axis. Our results underscore the ability to control the crystal structures of van der Waals type PbI2 in nanowire via the VLS technique, which is critical for the subsequent conversion process into perovskite nanostructures and corresponding properties.

17.
Nanomaterials (Basel) ; 11(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375498

RESUMEN

Due to the tremendous increase in power conversion efficiency (PCE) of organic-inorganic perovskite solar cells (PSCs), this technology has attracted much attention. Despite being the fastest-growing photovoltaic technology to date, bottlenecks such as current density-voltage (J-V) hysteresis have significantly limited further development. Current density measurements performed with different sweep scan speeds exhibit hysteresis and the photovoltaic parameters extracted from the current density-voltage measurements for both scan directions become questionable. A current density-voltage measurement protocol needs to be established which can be used to achieve reproducible results and to compare devices made in different laboratories. In this work, we report a hysteresis analysis of a hole-transport-material-free (HTM-free) carbon-counter-electrode-based PSC conducted by current density-voltage and impedance spectra measurements. The effect of sweep scan direction and time delay was examined on the J-V characteristics of the device. The hysteresis was observed to be strongly sweep scan direction and time delay dependent and decreased as the delay increased. The J-V analysis conducted in the reverse sweep scan direction at a lower sweep time delay of 0.2 s revealed very large increases in the short circuit current density and the power conversion efficiency of 57.7% and 56.1%, respectively, compared with the values obtained during the forward scan under the same conditions. Impedance spectroscopy (IS) investigations were carried out and the effects of sweep scan speed, time delay, and frequency were analyzed. The hysteresis was observed to be strongly sweep scan direction, sweep time delay, and frequency dependent. The correlation between J-V and IS data is provided. The wealth of photovoltaic and impendence spectroscopic data reported in this work on the hysteresis study of the HTM-free PSC may help in establishing a current density-voltage measurement protocol, identifying components and interfaces causing the hysteresis, and modeling of PSCs, eventually benefiting device performance and long-term stability.

18.
ACS Nano ; 14(11): 14790-14797, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33078942

RESUMEN

Organolead halide perovskites have drawn significant attention from the scientific community as one of the most attractive materials in optoelectronics, especially in the field of photovoltaics. In this study, we focus on using halide perovskites in processing thin film transistors (TFTs). Halide perovskites have high solution processability and excellent carrier transport characteristics, in particular for holes. The present work aims to fill a gap in oxide-based technology. It concerns the process of using high-stable and reliable p-type oxide-based devices to target CMOS technology (complementary metal-oxide-semiconductor). We report on a solution-processed high-performance TFT based on methylammonium lead iodide (CH3NH3PbI3) perovskite semiconductor films, which shows promise for devices that can be simple to manufacture with high reliability, reproducibility, and excellent stability in atmospheric conditions. To achieve a highly stable perovskite semiconductor film, we introduce diethylsulfide in the perovskite precursor. The TFT shows a stable p-type behavior when operated at low voltages (≤-2 V) and has a current modulation of >104, an almost negligible hysteresis, and average saturation mobility of about 18.8 cm2 V-1 s-1, taken over 50 devices tested (the highest one measured was ∼23.2 cm2 V-1 s-1). This is the highest value until now reported in the literature. In addition, we demonstrate that perovskite TFTs can be fabricated at temperatures as low as 150 °C on flexible substrates with a saturation mobility of ∼11.5 cm2 V-1 s-1. The high-performance perovskite TFT with excellent stability is a promising candidate for the next generation of p-type transistors for a plethora of low-cost electronics applications.

19.
Nano Lett ; 20(8): 5646-5654, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32609527

RESUMEN

Owning to the unique optical and electronic properties, organic-inorganic hybrid perovskites have made impressive progress in photodetection applications. However, achieving ultrabroadband detection over the ultraviolet (UV) to terahertz (THz) range remains a major challenge for perovskite photodetectors. Here, we report an ultrabroadband (UV-THz) dual-mechanism photodetector based on CH3NH3PbI3 films. The photoresponse of the PD in the UV-visible (vis) and near-infrared (NIR)-THz bands is mainly caused by the photoconductive (PC) effect and bolometric effect, respectively. High responsivities ranging from 105 to 102 mA W-1 are acquired within UV-THz bands under 1 V bias voltage at room temperature. Moreover, the device also shows fast rise and decay times of 76 and 126 ns under 1064 nm laser illumination, respectively. This work provides insight into the thermoelectric characteristics of perovskite and offers a new way to realize ultrabroadband photodetectors notably for THz detector at room temperature.

20.
Nano Lett ; 20(5): 3090-3097, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283026

RESUMEN

Despite the intense research on photovoltaic lead halide perovskites, reported optical properties as basic as the absorption onset and the optical band gap vary significantly. To unambiguously answer the question whether the discrepancies are a result of differences between bulk and "near-surface" material, we perform two nonlinear spectroscopies with drastically different information depths on single crystals of the prototypical (CH3NH3)PbI3 methylammonium lead iodide. Two-photon absorption, detected via the resulting generation of carriers and photocurrents (2PI-PC), probes the interband transitions with an information depth in the millimeter range relevant for bulk (single-crystal) material. In contrast, the transient magneto-optical Kerr effect (trMOKE) measured in a reflection geometry determines the excitonic transition energies in the region near (hundreds of nm) the surface which also determine the optical properties in typical thin films. To identify differences between structural phases, we sweep the sample temperature across the orthorhombic-tetragonal phase transition temperature. In the application-relevant room-temperature tetragonal phase (at 170 K), we find a bulk band gap of 1.55 ± 0.01 eV, whereas in the near-surface region excitonic transitions occur at 1.59 ± 0.01 eV. The latter value is consistent with previous reflectance measurements by other groups and considerably higher than the bulk band gap. The small band gap of the bulk material explains the extended infrared absorption of crystalline perovskite solar cells, the low-energy bands which carry optically driven spin-polarized currents, and the narrow bandwidth of crystalline perovskite photodetectors making use of the spectral filtering at the surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA