Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396746

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of rare genetic and metabolic diseases caused by alterations in glycosylation pathways. Five patients bearing CDG-causing mutations in the SLC35A1 gene encoding the CMP-sialic acid transporter (CST) have been reported to date. In this study we examined how specific mutations in the SLC35A1 gene affect the protein's properties in two previously described SLC35A1-CDG cases: one caused by a substitution (Q101H) and another involving a compound heterozygous mutation (T156R/E196K). The effects of single mutations and the combination of T156R and E196K mutations on the CST's functionality was examined separately in CST-deficient HEK293T cells. As shown by microscopic studies, none of the CDG-causing mutations affected the protein's proper localization in the Golgi apparatus. Cellular glycophenotypes were characterized using lectins, structural assignment of N- and O-glycans and analysis of glycolipids. Single Q101H, T156R and E196K mutants were able to partially restore sialylation in CST-deficient cells, and the deleterious effect of a single T156R or E196K mutation on the CST functionality was strongly enhanced upon their combination. We also revealed differences in the ability of CST variants to form dimers. The results of this study improve our understanding of the molecular background of SLC35A1-CDG cases.


Asunto(s)
Mutación , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Citidina Monofosfato/metabolismo , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glicoconjugados/metabolismo , Glicosilación , Células HEK293 , Humanos , Lectinas/metabolismo
2.
Comput Struct Biotechnol J ; 17: 1123-1134, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31462968

RESUMEN

The covalent attachment of sugars to growing glycan chains is heavily reliant on a specific family of solute transporters (SLC35), the nucleotide sugar transporters (NSTs) that connect the synthesis of activated sugars in the nucleus or cytosol, to glycosyltransferases that reside in the lumen of the endoplasmic reticulum (ER) and/or Golgi apparatus. This review provides a timely update on recent progress in the NST field, specifically we explore several NSTs of the SLC35 family whose substrate specificity and function have been poorly understood, but where recent significant progress has been made. This includes SLC35 A4, A5 and D3, as well as progress made towards understanding the association of SLC35A2 with SLC35A3 and how this relates to their potential regulation, and how the disruption to the dilysine motif in SLC35B4 causes mislocalisation, calling into question multisubstrate NSTs and their subcellular localisation and function. We also report on the recently described first crystal structure of an NST, the SLC35D2 homolog Vrg-4 from yeast. Using this crystal structure, we have generated a new model of SLC35A1, (CMP-sialic acid transporter, CST), with structural and mechanistic predictions based on all known CST-related data, and includes an overview of reported mutations that alter transport and/or substrate recognition (both de novo and site-directed). We also present a model of the CST-del177 isoform that potentially explains why the human CST isoform remains active while the hamster CST isoform is inactive, and we provide a possible alternate access mechanism that accounts for the CST being functional as either a monomer or a homodimer. Finally we provide an update on two NST crystal structures that were published subsequent to the submission and during review of this report.

3.
Biotechnol Bioeng ; 116(11): 2815-2822, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317538

RESUMEN

Recombinant glycoproteins expressed in Chinese hamster ovary (CHO) cells contain two forms of sialic acids; N-acetylneuraminic acid (Neu5Ac) as a major type and N-glycolylneuraminic acid (Neu5Gc) as a minor type. The Neu5Gc glycan moieties in therapeutic glycoproteins can elicit immune responses because they do not exist in human. In the present work, to reduce Neu5Gc levels of recombinant glycoproteins from CHO cell cultures, we coexpressed cytidine-5'-monophosphate-sialic acid transporter (CMP-SAT) that is an antiporter and transports cytosolic CMP-sialic acids (both forms) into Golgi lumen. When human erythropoietin was used as a target human glycoprotein, coexpression of CMP-SAT resulted in a significant decrease of Neu5Gc level by 41.4% and a notable increase of Neu5Ac level by 21.2%. This result could be reasonably explained by our hypothesis that the turnover rate of Neu5Ac to Neu5Gc catalyzed by CMP-Neu5Ac hydroxylase would be reduced through facilitated transportation of Neu5Ac into Golgi apparatus by coexpression of CMP-SAT. We confirmed the effects of CMP-SAT coexpression on the decrease of Neu5Gc level and the increase of Neu5Ac level using another glycoprotein human DNase I. Therefore, CMP-SAT coexpression might be an effective strategy to reduce the levels of undesired Neu5Gc in recombinant therapeutic glycoproteins from CHO cell cultures.


Asunto(s)
Eritropoyetina/biosíntesis , Expresión Génica , Aparato de Golgi/metabolismo , Ácidos Neuramínicos/metabolismo , Transportadores de Anión Orgánico/metabolismo , Simportadores/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Eritropoyetina/genética , Aparato de Golgi/genética , Humanos , Transportadores de Anión Orgánico/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Simportadores/genética
4.
Comput Struct Biotechnol J ; 10(16): 23-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25210595

RESUMEN

The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure-function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.

5.
Protein Expr Purif ; 101: 165-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25050460

RESUMEN

Membrane proteins, including solute transporters play crucial roles in cellular function and have been implicated in a variety of important diseases, and as such are considered important targets for drug development. Currently the drug discovery process is heavily reliant on the structural and functional information discerned from high-resolution crystal structures. However, membrane protein structure determination is notoriously difficult, due in part to challenges faced in their expression, solubilisation and purification. The CMP-sialic acid transporter (CST) is considered to be an attractive target for drug discovery. CST inhibition reduces cancer cell sialylation and decreases the metastatic potential of cancer cells and to date, no crystal structure of the CST, or any other nucleotide sugar transporter exists. Here we describe the optimised conditions for expression in Pichia pastoris, solubilisation using n-nonyl ß-d-maltopyranoside (NM) and single step purification of a functional CST. Importantly we show that despite being able to solubilise and purify the CST using a number of different detergents, only NM was able to maintain CST functionality.


Asunto(s)
Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Transportadores de Anión Orgánico/biosíntesis , Transportadores de Anión Orgánico/genética , Pichia/metabolismo , Simportadores/biosíntesis , Simportadores/genética , Transporte Biológico , Western Blotting , Detergentes/farmacología , Electroforesis en Gel de Poliacrilamida , Expresión Génica , Pichia/genética , Proteolípidos/metabolismo
6.
Chembiochem ; 14(15): 1936-42, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24014346

RESUMEN

CMP-sialic acid transporter: We report an in-depth, multidisciplinary, structural study that has identified the amino acid residues intimately involved in CMP-sialic acid transporter (CST) substrate specificity. Our data provide a significant contribution towards a better understanding the structure-function relationship of this important family of transporters and the rational design of CST inhibitors.


Asunto(s)
Citidina Monofosfato/metabolismo , Transportadores de Anión Orgánico/metabolismo , Simportadores/metabolismo , Secuencia de Aminoácidos , Línea Celular , Membrana Celular/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/genética , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Simportadores/química , Simportadores/genética
7.
Bioengineered ; 4(2): 90-4, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22989990

RESUMEN

Engineered zinc-finger nucleases (ZFNs) are powerful tools for creating double-stranded-breaks (DSBs) in genomic DNA in a site-specific manner. These DSBs generated by ZFNs can be repaired by homology-directed repair or nonhomologous end joining, in which the latter can be exploited to generate insertion or deletion mutants. Based on published literature, we designed a pair of zinc-finger nucleases and inactivated the GDP-fucose transporter gene (Slc35c1) in a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter gene (Slc35a1). The resulting mutant cell line, CHO-gmt5, lacks functional GDP-fucose transporter and CMP-sialic acid transporter. As a result, these cells can only produce asialylated and afucosylated glycoproteins. It is now widely recognized that removal of the core fucose from the N-glycans attached to Asn(297) of human IgG1 significantly enhances its binding to its receptor, FcγRIIIa, and thereby dramatically improves antibody-dependent cellular cytotoxicity (ADCC). Recent reports showed that removal of sialic acid from IgG1 also enhances ADCC. Therefore, CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC. These cells show comparable growth rate to wild type CHO-K1 cells and uncompromised transfection efficiency, which make them desirable for use as a production line.


Asunto(s)
Anticuerpos/metabolismo , Fucosa/química , Ácido N-Acetilneuramínico/química , Proteínas Recombinantes/metabolismo , Animales , Anticuerpos/química , Anticuerpos/genética , Células CHO , Cricetinae , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
8.
FEBS Open Bio ; 1: 15-22, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23650571

RESUMEN

Green algae have a great potential as biofactories for the production of proteins. Chlamydomonas reinhardtii, a representative of eukaryotic microalgae, has been extensively used as a model organism to study light-induced gene expression, chloroplast biogenesis, photosynthesis, light perception, cell-cell recognition, and cell cycle control. However, little is known about the glycosylation machinery and N-linked glycan structures of green algae. In this study, we performed mass spectrometry analysis of N-linked oligosaccharides released from total extracts of Chlamydomonas reinhardtii and demonstrated that C. reinhardtii algae possess glycoproteins with mammalian-like sialylated N-linked oligosaccharides. These findings suggest that C. reinhardtii may be an attractive system for expression of target proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA