Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.017
Filtrar
1.
Mol Divers ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014146

RESUMEN

Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38990306

RESUMEN

NLRP1 is predominantly overexpressed in breast cancer tissue, and the evaluated activation of NLRP1 inflammasome is associated with tumor growth, angiogenesis, and metastasis. Therefore, targeting NLRP1 activation could be a crucial strategy in anticancer therapy. In this study, we investigated the hypothesis that NLRP1 pathway may contribute to the cytotoxic effects of celecoxib and nimesulide in MDA-MB-231 cells. First of all, IC50 values and inhibitory effects on the colony-forming ability of drugs were evaluated in cells. Then, the alterations in the expression levels of NLRP1 inflammasome components induced by drugs were investigated. Subsequently, the release of inflammatory cytokine IL-1ß and the activity of caspase-1 in drug-treated cells were measured. According to our results, celecoxib and nimesulide selectively inhibited the viability of MDA-MB-231 cells. These drugs remarkably inhibited the colony-forming ability of cells. The expression levels of NLRP1 inflammasome components decreased in celecoxib-treated cells, accompanied by decreased caspase-1 activity and IL-1ß release. In contrast, nimesulide treatment led to the upregulation of the related protein expressions with unchanged caspase-1 activity and increased IL-1ß secretion. Our results indicated that the NLRP1 inflammasome pathway might contribute to the antiproliferative effects of celecoxib in MDA-MB-231 cells but is not a crucial mechanism for nimesulide.

3.
Bioorg Chem ; 150: 107623, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002251

RESUMEN

Five new pyridazine scaffolds were synthesized and assessed for their inhibitory potential against both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) compared with indomethacin and celecoxib. The majority of the synthesized compounds demonstrated a definite preference for COX-2 over COX-1 inhibition. Compounds 4c and 6b exhibited enhanced potency towards COX-2 enzyme with IC50 values of 0.26 and 0.18 µM, respectively, compared to celecoxib with IC50 = 0.35 µM. The selectivity index (SI) of compound 6b was 6.33, more than that of indomethacin (SI = 0.50), indicating the most predominant COX-2 inhibitory activity. Consequently, the in vivo anti-inflammatory activity of compound 6b was comparable to that of indomethacin and celecoxib and no ulcerative effect was detected upon the oral administration of compound 6b, as indicated by the histopathological examination. Moreover, compound 6b decreased serum plasma PEG2 and IL-1ß. To rationalize the selectivity and potency of COX-2 inhibition, a molecular docking study of compound 6b into the COX-2 active site was carried out. The COX-2 inhibition and selectivity of compound 6b can be attributed to its ability to enter the side pocket of the COX-2 enzyme and interact with the essential amino acid His90. Together, these findings suggested that compound 6b is a promising lead for the possible design of COX-2 inhibitors that could be employed as safe and effective anti-inflammatory drugs.

4.
Heliyon ; 10(12): e32523, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38952369

RESUMEN

Rhamnus utilis Decne. (Family Rhamnaceae Juss.) leaf is commonly prepared as a anti-inflammatory herbal medicine and used for tea production. To investigate the mechanism of Rhamnus utilis Decne. aqueous extract (RDAE) against acute alcoholic liver disease (ALD) in mice. The ALD mouse (Male ICR) model was induced via intragastric administration of 52 % alcohol. Mice in each group were treated by gavage once daily with the RDAE (1.12, 2.25, 4.500 g/kg). The expression of proteins involved in the MAPKs/NF-κB/COX-2-iNOS pathway was measured by western blotting. Non-targeted metabolomics was used to determine metabolic profiles and critical pathways, while targeted metabolomics validated key amino acid metabolites. After administration of RDAE, the body mass of mice was significantly increased. The liver index was significantly decreased. Meanwhile, the serum levels of AST, ALT, TG, TC, MDA, TNF-α, IL-1ß and IL-6 were significantly decreased (P < 0.05, P < 0.01), but GSH level was inversely increased (P < 0.05). Metabolomic analysis revealed nine major pathways involved in the therapeutic effect of RDAE, including fructose and mannose metabolism. The levels of 7 amino acids including leucine, proline and alanine/sarcosine were significantly upregulated. Additionally, protein levels of p-NF-κB (p65)/NF-κB (p65), p-ERK1/2/ERK1/2, p-JNK/JNK, p-p38/p38, COX-2 and iNOS were significantly decreased (P < 0.01, P < 0.05). RDAE is used to treat acute ALD by improving lipid metabolism, inhibiting the expression of pro-inflammatory cytokines and regulating MAPKs/NF-κB/COX-2-iNOS signalling pathway. These findings provide valuable insights for acute ALD therapy based on traditional Chinese medicine (TCM).

5.
JIMD Rep ; 65(4): 212-225, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974613

RESUMEN

Background: NAXE-encephalopathy or early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL-1) and NAXD-encephalopathy (PEBEL-2) have been described recently as mitochondrial disorders causing psychomotor regression, hypotonia, ataxia, quadriparesis, ophthalmoparesis, respiratory insufficiency, encephalopathy, and seizures with the onset being usually within the first three years of life. It usually leads to rapid disease progression and death in early childhood. Anecdotal reports suggest that niacin, through its role in nicotinamide adenine dinucleotinde (NAD) de novo synthesis, corrects biochemical derangement, and slows down disease progression. Reports so far have supported this observation. Methods: We describe a patient with a confirmed PEBEL-1 diagnosis and report his clinical response to niacin therapy. Moreover, we systematically searched the literature for PEBEL-1 and PEBEL-2 patients treated with niacin and details about response to treatment and clinical data were reviewed. Furthermore, we are describing off-label use of a COX2 inhibitor to treat niacin-related urticaria in NAXE-encephalopathy. Results: So far, seven patients with PEBEL-1 and PEBEL-2 treated with niacin were reported, and all patients showed a good response for therapy or stabilization of symptoms. We report a patient exhibiting PEBEL-1 with an unfavorable outcome despite showing initial stabilization and receiving the highest dose of niacin reported to date. Niacin therapy failed to halt disease progression or attain stabilization of the disease in this patient. Conclusion: Despite previous positive results for niacin supplementation in patients with PEBEL-1 and PEBEL-2, this is the first report of a patient with PEBEL-1 who deteriorated to fatal outcome despite being started on the highest dose of niacin therapy reported to date.

6.
J Comp Pathol ; 212: 42-50, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986425

RESUMEN

Canine ovarian epithelial tumours (OETs) are currently divided into ovarian adenomas and carcinomas, which are further inconsistently subclassified as papillary or cystic, whereas in human medicine, OETs are subdivided into several subtypes. This study aimed to establish clear morphological features enabling more consistent distinction between benign OETs and ovarian carcinomas (OvCas) as well as defining different histopathological patterns of canine OvCas. Analysis revealed a mitotic count threshold of >2 as a potential criterion for differentiating OvCas from benign OETs. Alongside ovarian adenomas, ovarian borderline tumours were introduced as a distinct category among benign OETs. OvCas exhibited five different histopathological patterns, namely papillary, solid with tubular differentiation, micropapillary, cystic and sarcomatous. Since some OvCas can morphologically overlap with other ovarian tumours, the expression of cytokeratin 7, a cytokeratin expressed in ovarian epithelium, was assessed and proved helpful, although it was not expressed in all cases. Furthermore, we investigated the expression of 14-3-3σ and cyclooxygenase 2 (COX-2). Based on the frequent expression of 14-3-3σ, this marker appears to have a role in canine OETs since it is not expressed in normal canine ovaries. The infrequent expression of COX-2 suggests that it is a poor candidate as a potential therapeutic target in canine OvCas.

7.
Chem Biodivers ; : e202401309, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011809

RESUMEN

Acetaminophen, a centrally-acting old analgesic drug, is a weak inhibitor of cyclooxygenase (COX) isoforms with some selectivity toward COX-2. This compound was used in this work as a precursor to create nine acetaminophen based coumarins (ACFs). To satisfy the aim of this work, which states the synthesis of acetaminophen-based coumarins as selective COX-2 inhibitors, the ACFs were subjected to two types of investigation: in vitro and in silico. Given the former type, the ACFs capacity to block COX-1 and COX-2 was investigated in lab settings. On the other hand, the in silico investigation included docking the chemical structures of ACFs into the active sites of these enzymes, predicting their anticipated toxicities, and determining the ADME characteristics. The results of the in vitro study revealed that the ACFs demonstrated good-to-excellent inhibitory properties against the enzymes under study. Also, these ACFs exhibited a high level of COX-2 selectivity, which improved as the capacity of  aromatic substitute for withdrawing electrons was enhanced. Results of docking were comparable to the in vitro investigation in case of COX-2. On the other hand, the in silico investigations indicated that the synthesized ACFs are safer than their precursor, acetaminophen, with a high potential to consider oral-administrated candidates.

8.
BMC Complement Med Ther ; 24(1): 260, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987758

RESUMEN

BACKGROUND: The Pro-inflammatory mediators such as prostaglandin E2, nitric oxide and TNF-α are the key players in the stimulation of the inflammatory responses. Thus, the pro-inflammatory mediators are considered to be potential targets for screening nutraceutical with anti-inflammatory activity. METHODS: In this context, we explored the anti-inflammatory potency of seagrass extract with western blot (Bio-Rad) analysis by using LPS induced RAW macrophages as in-vitro models, western blot analysis, In-silico methods using Mastero 13.0 software. RESULTS: The anti-inflammatory activity of Seagrass was demonstrated through down regulation of Pro-inflammatory markers such as Cyclooxygenase-2, induced Nitric oxide synthase and prostaglandin E synthase-1. The results were validated by docking the phytochemical constituents of seagrass namely Isocoumarin, Hexadecanoic acid, and Cis-9 Octadecenoic acid, 1,2 Benzene dicarboxylic acid and beta-sitosterol with TNF-alpha, COX-2, iNOS and PGES-1. CONCLUSION: The methanolic extract of seagrass Halophila beccarii is a potential nutraceutical agent for combating against inflammation with a significant anti-inflammatory activity.


Asunto(s)
Antiinflamatorios , Suplementos Dietéticos , Extractos Vegetales , Ratones , Antiinflamatorios/farmacología , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Células RAW 264.7 , Biomarcadores , Alismatales/química , Inflamación/tratamiento farmacológico , Ciclooxigenasa 2/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38967632

RESUMEN

The structures of three 1:1 cocrystal forms of etoricoxib {ETR; systematic name: 5-chloro-2-(6-methylpyridin-3-yl)-3-[4-(methylsulfonyl)phenyl]pyridine, C18H15ClN2O2S} have been synthesized and characterized by single-crystal X-ray diffraction; these are etoricoxib-benzoic acid (1/1), C18H15ClN2O2S·C7H6O2 (ETR-Bz), etoricoxib-4-fluorobenzoic acid (1/1), C18H15ClN2O2S·C7H5FO2 (ETR-PFB), and etoricoxib-4-nitrobenzoic acid (1/1), C18H15ClN2O2S·C7H5NO4 (ETR-PNB). Powder X-ray diffraction and thermal differential scanning calorimetry-thermogravimetry (DSC-TG) techniques were also used to characterize these multicomponent systems. Due to the influence of the corresponding acids, ETR shows different conformations. Furthermore, the energetic contributions of the supramolecular motifs have been established by energy framework studies of the stabilizing interaction forces and are consistent with the thermal stability of the cocrystals.

10.
Ultrastruct Pathol ; 48(4): 274-296, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38946300

RESUMEN

Sepsis denotes a serious high mortality concern. The study was designed to evaluate the effect of mesenchymal stem cell exosomes (MSC-exosomes) on the evolution of the animal model of sepsis. In this study, 36 rats were distributed into three groups, (I) controls, (II) LPS-treated, and (III) LPS+MSC-EVs. Sepsis was simulated by administering E. coli-LPS to the laboratory animals. Group III was given MSC-exosomes four hours after the LPS injection. Forty-eight hours later rats were sacrificed. Ileum samples were excised, and processed for the histological assessment, immunohistochemical identification of CD44, and inducible nitric oxide synthase (iNOS). Ileum homogenate was used to estimate tumor necrosis factor α (TNF α) besides Cyclooxygenase-2 (COX 2). PCR was used for the detection of interleukin 1α (IL­1α), and interleukin 17 (IL­17). Statistical and morphometrical analysis was done. The LPS-treated group showed increased TNF-α, IL­1α, IL­17, and decreased COX 2. LPS administration led to cytoplasmic vacuolization of enterocytes, an increase in the vasculature, and cellular infiltrations invaded the lamina propria. There was a significant rise in goblet cells and the proportion of collagen fibers. Ultrastructurally, the enterocytes displayed nuclear irregularity, rough endoplasmic reticulum (rER) dilatation, and increased mitochondria number. Sepsis induces a significant increase in iNOS and a decrease in CD44 immune expressions. LPS+MSC-EVs group restored normal ileum structure and revealed a significant elevation in CD44 and a reduction in iNOS immunoreactions. LPS-sepsis induced an obvious ileum inflammatory deterioration ameliorated by MSC-exosomes, mostly through their antioxidant, anti-inflammatory, and anti-apoptotic properties.


Asunto(s)
Modelos Animales de Enfermedad , Exosomas , Íleon , Células Madre Mesenquimatosas , Sepsis , Animales , Sepsis/complicaciones , Ratas , Íleon/patología , Exosomas/metabolismo , Masculino , Inmunohistoquímica , Ratas Wistar , Óxido Nítrico Sintasa de Tipo II/metabolismo
11.
Heliyon ; 10(13): e33370, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027511

RESUMEN

Background: Dihydroartemisinin (DHA), a derivative of Artemisia annua, has been shown to possess anti-inflammatory properties. Besides, Yes-associated protein 1 (YAP1) plays a crucial role in maintaining liver homeostasis. Methods: This study used Yap1 Flox/Flox, Albumin-Cre mice with hepatocyte-specific Yap1 knockout (referred to as Yap1 LKO) and their control mice (Yap1 Flox/Flox, referred to as Yap1 Flox). The effect of Yap1 on lipid metabolism homeostasis was investigated through non-targeted metabolomic analysis of mouse liver. Subsequently, DHA was administered to Yap1 LKO mice to assess its potential as a treatment. Liver pathology was evaluated via H&E staining, and the levels of AST, ALT, and TG were quantified using biochemical assays. The contents of arachidonic acid (AA), prostaglandin E1 (PGE1), and leukotrienes (LT) in the liver were measured using ELISA, while the protein expressions of PLIN2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were analyzed through IHC staining. Results: Hepatocyte-specific Yap1 knockout activated the AA metabolic pathway, resulting in increased elevated levels of AA, PGE1, and LT levels, along with inflammatory cytokine infiltration. DHA mitigated the elevation of metabolites such as PGE1 and LT caused by the AA metabolic pathway activation by down-regulating the levels of COX-2 and 5-LOX in the liver of Yap1 LKO mice. Moreover, it alleviated the accumulation of lipid vacuoles and reduced triglyceride (TG) and perilipin-2 (PLIN2) levels in the liver of Yap1 LKO mice. Conclusions: Excessively low YAP1 expression induces liver inflammation and disturbances in lipid metabolism, whereas DHA modulated AA metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2.

12.
Biotechnol Rep (Amst) ; 43: e00848, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39027919

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most serious types of cancer that accounts for numerous cancer deaths worldwide. HCC is poorly prognosed and is a highly chemotherapy-resistant tumor. Therefore, new treatments are urgently needed. Exopolysaccharides (EPS-1) produced from the novel Bacillus sonorensis strain was found to exhibit chemopreventive effects against cancer. Objective: Evaluating the anti-cancer cytotoxic effect of exopolysaccharides (EPS-1) produced by the newly studied Bacillus sonorensis strain SAmt2. Methods: The cytotoxic activity was investigated through cell cycle, apoptosis, and autophagy analyses using flow cytometry technique. Also, the effect of EPS-1 on Huh7 release of COX-2 was examined using ELISA. Results: Our results revealed that EPS-1exhibit an anti-proliferative effect on Huh7 cells through decreasing the percentage of cells at the S-phase and G2 phase, while increasing the cell population at the sub-G1 and G1 phases. Apoptosis analysis showed that EPS-1 increased necrotic and apoptotic cell fractions in EPS-1 treated Huh7. In addition, it induced significant autophagic cell death in the Huh7.Finally, antiproliferative and apoptosis induction results were supportedby ELISA assay results where the protein level of COX-2 was declined. Conclusion: : In conclusion, EPS-1 derived from B. sonorensis SAmt2, is a promising proliferation inhibitor of Huh7 cells with potential anticancer effects.

13.
Expert Opin Ther Pat ; : 1-25, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958471

RESUMEN

INTRODUCTION: COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED: This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION: The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.

14.
Prostaglandins Other Lipid Mediat ; : 106875, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019102

RESUMEN

The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.

15.
Inflammopharmacology ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858336

RESUMEN

Quinone-containing compounds have risen as promising anti-inflammatory targets; however, very little research has been directed to investigate their potentials. Accordingly, the current study aimed to design and synthesize group of quinones bearing different substituents to investigate the effect of these functionalities on the anti-inflammatory activities of this important scaffold. The choice of these substituents was carefully done, varying from a directly attached heterocyclic ring to different aromatic moieties linked through a nitrogen spacer. Both in vitro and in vivo anti-inflammatory activities of the synthesized compounds were assessed relative to the positive standards: celecoxib and indomethacin. The in vitro enzymatic and transcription inhibitory actions of all the synthesized compounds were tested against cyclooxygenase-2 (COX-2), cyclooxygenase-1 (COX-1), and 5-lipoxygenase (LOX) and the in vivo gene expression of Interleukin-1, interleukin 10, and Tumor Necrosis Factor-α (TNF-α) were determined. The IC50 against COX-1 and COX-2 enzymes obtained by the immunoassay test revealed promising activities of sixteen compounds with selectivity indices higher than 100-fold COX-2 selectivity. Out of those, four compounds revealed selectivity indices comparable to celecoxib as a reference drug. Furthermore, all the tested compounds inhibited LOX with an IC50 in the range of 1.59-3.11 µM superior to that of the reference drug used; zileuton (IC50 = 3.50 µM). Consequently, these results highlight the promising LOX inhibitory activity of the tested compounds. The obtained in vivo paw edema results showed high inhibitory percentage for the compounds 9a, 9b, and 11a with the significant lower TNF-α relative mRNA expression for compounds 5a, 5d, 9a, 9b, 12d, and 12e. Finally, in silico docking of the most active compounds (5b, 5d, 9a, 9b) against COX2 enzymes presented an acceptable justification of the obtained in vitro inhibitory activities. As a conclusion, Compounds 5b, 5d, 9a, 9b, and 11b showed promising results and thus deserves further investigation.

16.
IUBMB Life ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873890

RESUMEN

Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial-mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)-vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK-VEGF/MMPs signaling pathway.

17.
Bioorg Chem ; 150: 107559, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38905889

RESUMEN

A library of new quinazoline pharmacophores bearing benzenesulfonamide moiety was designed and synthesized. Compounds 3a-n were screened for their in vitro antimicrobial activity against eight multidrug-resistant clinical isolates. Compounds 3d and 3n exhibited prominent antibacterial activity, specifically against MRSA. After exhibiting relative in vitro and in vivo safety, compound 3n was selected to assess its anti-inflammatory activity displaying promising COX-2 inhibitory activity compared to Ibuprofen. In vivo experimental MRSA pneumonia model was conducted on immunodeficient (irradiated) mice to reveal the antimicrobial and anti-inflammatory responses of compound 3n compared to azithromycin (AZ). Treatment with compound 3n (10 and 20 mg/kg) as well as AZ resulted in a significant decrease in bacterial counts in lung tissues, suppression of serum C-reactive protein (CRP), lung interleukin-6 (IL-6), myeloperoxidase activity (MPO) and transforming growth factor-ß (TGF-ß). Compound 3n showed a non-significant deviation of lung TGF-ß1 from normal values which in turn controlled the lung inflammatory status and impacted the histopathological results. Molecular docking of 3n showed promising interactions inside the active sites of TGF-ß and COX-2. Our findings present a new dual-target quinazoline benzenesulfonamide derivative 3n, which possesses significant potential for treating MRSA-induced pneumonia in an immunocompromised state.

18.
Vet World ; 17(5): 1052-1072, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38911075

RESUMEN

Chronic inflammation plays a crucial role in carcinogenesis. High levels of serum prostaglandin E2 and tissue overexpression of cyclooxygenase-2 (COX-2) have been described in breast, urinary, colorectal, prostate, and lung cancers as being involved in tumor initiation, promotion, progression, angiogenesis, and immunosuppression. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for several medical conditions to not only decrease pain and fever but also reduce inflammation by inhibiting COX and its product synthesis. To date, significant efforts have been made to better understand and clarify the interplay between cancer development, inflammation, and NSAIDs with a view toward addressing their potential for cancer management. This review provides readers with an overview of the potential use of NSAIDs and selective COX-2 inhibitors for breast cancer treatment, highlighting pre-clinical in vitro and in vivo studies employed to evaluate the efficacy of NSAIDs and their use in combination with other antineoplastic drugs.

19.
Sci Rep ; 14(1): 14370, 2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909081

RESUMEN

Metabolites exploration of the ethyl acetate extract of Fusarium solani culture broth that was isolated from Euphorbia tirucalli root afforded five compounds; 4-hydroxybenzaldehyde (1), 4-hydroxybenzoic acid (2), tyrosol (3), azelaic acid (4), malic acid (5), and fusaric acid (6). Fungal extract as well as its metabolites were evaluated for their anti-inflammatory and anti-hyperpigmentation potential via in vitro cyclooxygenases and tyrosinase inhibition assays, respectively. Azelaic acid (4) exhibited powerful and selective COX-2 inhibition followed by fusaric acid (6) with IC50 values (2.21 ± 0.06 and 4.81 ± 0.14 µM, respectively). As well, azelaic acid (4) had the most impressive tyrosinase inhibitory effect with IC50 value of 8.75 ± 0.18 µM compared to kojic acid (IC50 = 9.27 ± 0.19 µM). Exclusive computational studies of azelaic acid and fusaric acid with COX-2 were in good accord with the in vitro results. Interestingly, this is the first time to investigate and report the potential of compounds 3-6 to inhibit cyclooxygenase enzymes. One of the most invasive forms of skin cancer is melanoma, a molecular docking study using a set of enzymes related to melanoma suggested pirin to be therapeutic target for azelaic acid and fusaric acid as a plausible mechanism for their anti-melanoma activity.


Asunto(s)
Antiinflamatorios , Ácidos Dicarboxílicos , Fusarium , Simulación del Acoplamiento Molecular , Fusarium/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/farmacología , Ácidos Dicarboxílicos/química , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Humanos , Ciclooxigenasa 2/metabolismo , Ácido Fusárico/farmacología , Ácido Fusárico/metabolismo , Ácido Fusárico/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Simulación por Computador , Inhibidores de la Ciclooxigenasa/farmacología , Inhibidores de la Ciclooxigenasa/química
20.
J Nanobiotechnology ; 22(1): 319, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849938

RESUMEN

Myeloid-derived suppressor cells (MDSCs) have played a significant role in facilitating tumor immune escape and inducing an immunosuppressive tumor microenvironment. Eliminating MDSCs and tumor cells remains a major challenge in cancer immunotherapy. A novel approach has been developed using gemcitabine-celecoxib twin drug-based nano-assembled carrier-free nanoparticles (GEM-CXB NPs) for dual depletion of MDSCs and tumor cells in breast cancer chemoimmunotherapy. The GEM-CXB NPs exhibit prolonged blood circulation, leading to the preferential accumulation and co-release of GEM and CXB in tumors. This promotes synergistic chemotherapeutic activity by the proliferation inhibition and apoptosis induction against 4T1 tumor cells. In addition, it enhances tumor immunogenicity by immunogenic cell death induction and MDSC-induced immunosuppression alleviation through the depletion of MDSCs. These mechanisms synergistically activate the antitumor immune function of cytotoxic T cells and natural killer cells, inhibit the proliferation of regulatory T cells, and promote the M2 to M1 phenotype repolarization of tumor-associated macrophages, considerably enhancing the overall antitumor and anti-metastasis efficacy in BALB/c mice bearing 4T1 tumors. The simplified engineering of GEM-CXB NPs, with their dual depletion strategy targeting immunosuppressive cells and tumor cells, represents an advanced concept in cancer chemoimmunotherapy.


Asunto(s)
Desoxicitidina , Gemcitabina , Inmunoterapia , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide , Nanopartículas , Animales , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones , Inmunoterapia/métodos , Femenino , Nanopartículas/química , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/inmunología , Proliferación Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA