Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Microbiol ; 15: 1387830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211316

RESUMEN

Salmonella enterica is a foodborne pathogen associated with both typhoid and non-typhoid illness in humans and animals. This problem is further exacerbated by the emergence of antibiotic-resistant strains of Salmonella enterica. Therefore, to meet public health and safety, there is a need for an alternative strategy to tackle antibiotic-resistant bacteria. Bacteriophages or (bacterial viruses), due to their specificity, self-dosing, and antibiofilm activity, serve as a better approach to fighting against drug-resistant bacteria. In the current study, a broad-host range lytic phage phiSalP219 was isolated against multidrug-resistant Salmonella enterica serotypes Paratyphi from a pond water sample. Salmonella phage phiSalP219 was able to lyse 28/30 tested strains of Salmonella enterica. Salmonella phage phiSalP219 exhibits activity in acidic environments (pH3) and high temperatures (70°C). Electron microscopy and genome analysis revealed that phage phiSalP219 is a member of class Caudoviricetes. The genome of Salmonella phage phiSalP219 is 146Kb in size with 44.5% GC content. A total of 250 Coding Sequence (CDS) and 25 tRNAs were predicted in its genome. Predicted open reading frames (ORFs) were divided into five groups based on their annotation results: (1) nucleotide metabolism, (2) DNA replication and transcription, (3) structural proteins, (4) lysis protein, and (5) other proteins. The absence of lysogeny-related genes in their genome indicates that Salmonella phage phiSalP219 is lytic in nature. Phage phiSalP219 was also found to be microbiologically safe (due to the absence of toxin or virulence-related genes) in the control of Salmonella enterica serovar Typhimurium infections in the ready-to-eat meat and also able to eradicate biofilm formed by the same bacterium on the borosilicate glass surface.

2.
Viruses ; 16(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39066262

RESUMEN

Few studies have addressed viral diversity in lemurs despite their unique evolutionary history on the island of Madagascar and high risk of extinction. Further, while a large number of studies on animal viromes focus on fecal samples, understanding viral diversity across multiple sample types and seasons can reveal complex viral community structures within and across species. Groups of captive lemurs at the Duke Lemur Center (Durham, NC, USA), a conservation and research center, provide an opportunity to build foundational knowledge on lemur-associated viromes. We sampled individuals from seven lemur species, i.e., collared lemur (Eulemur collaris), crowned lemur (Eulemur coronatus), blue-eyed black lemur (Eulemur flavifrons), ring-tailed lemur (Lemur catta), Coquerel's sifaka (Propithecus coquereli), black-and-white ruffed lemur (Varecia variegata variegata), and red ruffed lemur (Varecia rubra), across two lemur families (Lemuridae, Indriidae). Fecal, blood, and saliva samples were collected from Coquerel's sifaka and black-and-white ruffed lemur individuals across two sampling seasons to diversify virome biogeography and temporal sampling. Using viral metagenomic workflows, the complete genomes of anelloviruses (n = 4), cressdnaviruses (n = 47), caudoviruses (n = 15), inoviruses (n = 34), and microviruses (n = 537) were determined from lemur blood, feces, and saliva. Many virus genomes, especially bacteriophages, identified in this study were present across multiple lemur species. Overall, the work presented here uses a viral metagenomics approach to investigate viral communities inhabiting the blood, oral cavity, and feces of healthy captive lemurs.


Asunto(s)
Heces , Genoma Viral , Lemur , Animales , Heces/virología , Lemur/virología , Filogenia , Viroma , ADN Viral/genética , Boca/virología , Madagascar , Sangre/virología
3.
Virus Genes ; 60(3): 295-308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38594490

RESUMEN

Pseudomonas syringae is a gram-negative plant pathogen that infects plants such as tomato and poses a threat to global crop production. In this study, a novel lytic phage infecting P. syringae pv. tomato DC3000, named phage D6, was isolated and characterized from sediments in a karst cave. The latent period of phage D6 was found to be 60 min, with a burst size of 16 plaque-forming units per cell. Phage D6 was stable at temperatures between 4 and 40 °C but lost infectivity when heated to 70 °C. Its infectivity was unaffected at pH 6-10 but became inactivated at pH ≤ 5 or ≥ 12. The genome of phage D6 is a linear double-stranded DNA of 307,402 bp with a G + C content of 48.43%. There is a codon preference between phage D6 and its host, and the translation of phage D6 gene may not be entirely dependent on the tRNA library provided by the host. A total of 410 open reading frames (ORFs) and 14 tRNAs were predicted in its genome, with 92 ORFs encoding proteins with predicted functions. Phage D6 showed low genomic similarity to known phage genomes in the GenBank and Viral sequence databases. Genomic and phylogenetic analyses revealed that phage D6 is a novel phage. The tomato plants were first injected with phage D6, and subsequently with Pst DC3000, using the foliar spraying and root drenching inoculum approach. Results obtained after 14 days indicated that phage D6 inoculation decreased P. syringae-induced symptoms in tomato leaves and inhibited the pathogen's growth in the leaves. The amount of Pst DC3000 was reduced by 150- and 263-fold, respectively. In conclusion, the lytic phage D6 identified in this study belongs to a novel phage within the Caudoviricetes class and has potential for use in biological control of plant diseases.


Asunto(s)
Genoma Viral , Filogenia , Enfermedades de las Plantas , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/virología , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidad , Genoma Viral/genética , Solanum lycopersicum/virología , Solanum lycopersicum/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Fagos Pseudomonas/genética , Fagos Pseudomonas/aislamiento & purificación , Fagos Pseudomonas/clasificación , Composición de Base , Sistemas de Lectura Abierta , Secuenciación Completa del Genoma , ADN Viral/genética
4.
Front Cell Infect Microbiol ; 14: 1361045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572320

RESUMEN

Introduction: Over the past decade, Corynebacterium striatum (C. striatum), an emerging multidrug-resistant (MDR) pathogen, has significantly challenged healthcare settings, especially those involving individuals with weakened immune systems. The rise of these superbugs necessitates innovative solutions. Methods: This study aimed to isolate and characterize bacteriophages targeting MDR-C. striatum. Utilizing 54 MDR-C. striatum isolates from a local hospital as target strains, samples were collected from restroom puddles for phage screening. Dot Plaque and Double-layer plate Assays were employed for screening. Results: A novel temperate bacteriophage, named CSP1, was identified through a series of procedures, including purification, genome extraction, sequencing, and one-step growth curves. CSP1 possesses a 39,752 base pair circular double-stranded DNA genome with HK97-like structural proteins and potential for site-specific recombination. It represents a new species within the unclassified Caudoviricetes class, as supported by transmission electron microscopy, genomic evolutionary analysis, and collinearity studies. Notably, CSP1 infected and lysed 21 clinical MDR-C. striatum isolates, demonstrating a wide host range. The phage remained stable in conditions ranging from -40 to 55°C, pH 4 to 12, and in 0.9% NaCl buffer, showing no cytotoxicity. Discussion: The identification of CSP1 as the first phage targeting clinical C. striatum strains opens new possibilities in bacteriophage therapy research, and the development of diagnostic and therapeutic tools against pathogenic bacteria.


Asunto(s)
Bacteriófagos , Infecciones por Corynebacterium , Humanos , Bacteriófagos/genética , Corynebacterium/genética , Infecciones por Corynebacterium/microbiología , Genómica , Antibacterianos
5.
Microbiol Resour Announc ; 13(4): e0120923, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38456698

RESUMEN

We isolated and characterized two lytic bacteriophages against Staphylococcus aureus named TANUVAS_MVC-VPHSA1 and TANUVAS_MVC-VPHSA2, with the aim of investigating their genomic and structural features. The bacteriophages belong to the Caudoviricetes, and their genomes have sizes of 50,505 and 50,516 base pairs with a GC content of 41.4%.

6.
Microbiol Spectr ; 12(1): e0253723, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38063386

RESUMEN

IMPORTANCE: This work was undertaken because plasmid-dependent phages can reduce the prevalence of conjugative plasmids and can be leveraged to prevent the acquisition and dissemination of ARGs by bacteria. The two novel phages described in this study, Lu221 and Hi226, can infect Escherichia coli, Salmonella enterica, Kluyvera sp. and Enterobacter sp. carrying conjugative plasmids. This was verified with plasmids carrying resistance determinants and belonging to the most common plasmid families among Gram-negative pathogens. Therefore, the newly isolated phages could have the potential to help control the spread of ARGs and thus help combat the antimicrobial resistance crisis.


Asunto(s)
Bacteriófagos , Salmonella enterica , Humanos , Antibacterianos , Plásmidos/genética , Escherichia coli/genética , Salmonella enterica/genética , Conjugación Genética
7.
Microbiol Resour Announc ; 13(1): e0095423, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38032190

RESUMEN

We describe the genome of a lytic phage EKq1 isolated on Klebsiella quasipneumoniae, with activity against Klebsiella pneumoniae. EKq1 is an unclassified representative of the class Caudoviricetes, similar to Klebsiella phages VLCpiS8c, phiKp_7-2, and vB_KleS-HSE3. The 48,244-bp genome has a GC content of 56.43% and 63 predicted protein-coding genes.

8.
Int Microbiol ; 27(1): 155-166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37247084

RESUMEN

Escherichia coli is one of the most common causes of urinary tract infections. However, a recent upsurge in antibiotic resistance among uropathogenic E. coli (UPEC) strains has provided an impetus to explore alternative antibacterial compounds to encounter this major issue. In this study, a lytic phage against multi-drug-resistant (MDR) UPEC strains was isolated and characterized. The isolated Escherichia phage FS2B of class Caudoviricetes exhibited high lytic activity, high burst size, and a small adsorption and latent time. The phage also exhibited a broad host range and inactivated 69.8% of the collected clinical, and 64.8% of the identified MDR UPEC strains. Further, whole genome sequencing revealed that the phage was 77,407 bp long, having a dsDNA with 124 coding regions. Annotation studies confirmed that the phage carried all the genes associated with lytic life cycle and all lysogeny related genes were absent in the genome. Further, synergism studies of the phage FS2B with antibiotics demonstrated a positive synergistic association among them. The present study therefore concluded that the phage FS2B possesses an immense potential to serve as a novel candidate for treatment of MDR UPEC strains.


Asunto(s)
Bacteriófagos , Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Escherichia coli Uropatógena/genética , Bacteriófagos/genética , Escherichia , Infecciones Urinarias/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Escherichia coli/microbiología
9.
Int Microbiol ; 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044417

RESUMEN

Vibrio harveyi causes luminous vibriosis diseases in shrimp, which lead to shrimp mortalities. Considering the emergence of antibiotic-resistant bacteria, a Vibrio-infecting bacteriophage, VPMCC14, was characterized, and its lysis ability was evaluated on a laboratory scale. VPMCC14 was shown to infect V. harveyi S5A and V. harveyi ATCC 14126. VPMCC14 also exhibited a latent period of 30 min, with a burst size of 38 PFU/cell on its propagation strain. The bacteriophage was stable at a wide range of pHs (3-9), temperatures (0-45°C), and salinities (up to 40 ppt). VPMCC14 exhibited strict virulence properties as the bacteriophage entirely lysed V. harveyi S5A in liquid culture inhibition after 5 h and 4 h at very low MOIs such as MOI 0.1 and MOI 1, respectively. VPMCC14 could control V. harveyi infection in aquariums at MOI 1 and decrease the mortality of Penaeus monodon challenged by V. harveyi. VPMCC14 genome was 134,472 bp long with a 34.5 G+C% content, and 240 open reading frames. A unique characteristic of VPMCC14 was the presence of the HicB family antitoxin-coding open reading frame. Comparative genomic analyses suggested that VPMCC14 could be a representative of a new genus in the Caudoviricetes class. This novel bacteriophage, VPMCC14, could be applied as a biocontrol agent for controlling V. harveyi infection.

10.
Viruses ; 15(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140678

RESUMEN

Stenotrophomonas rhizophila was first discovered in soil; it is associated with the rhizosphere and capable of both protecting roots and stimulating plant growth. Therefore, it has a great potential to be used in biocontrol. The study of S. rhizophila phages is important for a further evaluation of their effect on the fitness and properties of host bacteria. A novel phage StenR_269 and its bacterial host S. rhizophila were isolated from a soil sample in the remediation area of a coal mine. Electron microscopy revealed a large capsid (~Ø80 nm) connected with a short tail, which corresponds to the podovirus morphotype. The length of the genomic sequence of the StenR_269 was 66,322 bp and it contained 103 putative genes; 40 of them encoded proteins with predicted functions, 3 corresponded to tRNAs, and the remaining 60 were identified as hypothetical ones. Comparative analysis indicated that the StenR_269 phage had a similar genome organization to that of the unclassified Xanthomonas phage DES1, despite their low protein similarity. In addition, the signature proteins of StenR_269 and DES1 had low similarity and these proteins clustered far from the corresponding proteins of classified phages. Thus, the StenR_269 genome is orphan and the analyzed data suggest a new family in the class Caudoviricetes.


Asunto(s)
Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Genómica , Proteínas de la Cápside/genética , Suelo
11.
Viruses ; 15(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38140696

RESUMEN

Stenotrophomonas maltophilia mainly causes respiratory infections that are associated with a high mortality rate among immunocompromised patients. S. maltophilia exhibits a high level of antibiotic resistance and can form biofilms, which complicates the treatment of patients infected with this bacterium. Phages combined with antibiotics could be a promising treatment option. Currently, ~60 S. maltophilia phages are known, and their effects on biofilm formation and antibiotic sensitivity require further examination. Bacteriophage StM171, which was isolated from hospital wastewater, showed a medium host range, low burst size, and low lytic activity. StM171 has a 44kbp dsDNA genome that encodes 59 open-reading frames. A comparative genomic analysis indicated that StM171, along with the Stenotrophomonas phage Suso (MZ326866) and Xanthomonas phage HXX_Dennis (ON711490), are members of a new putative Nordvirus genus. S. maltophilia strains that developed resistance to StM171 (bacterial-insensitive mutants) showed a changed sensitivity to antibiotics compared to the originally susceptible strains. Some bacterial-insensitive mutants restored sensitivity to cephalosporin and penicillin-like antibiotics and became resistant to erythromycin. StM171 shows strain- and antibiotic-dependent effects on the biofilm formation of S. maltophilia strains.


Asunto(s)
Bacteriófagos , Stenotrophomonas maltophilia , Humanos , Antibacterianos/farmacología , Bacteriófagos/genética , Stenotrophomonas maltophilia/genética , Biopelículas
12.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38010130

RESUMEN

The family Aoguangviridae includes dsDNA viruses that have been associated with marine archaea. Currently, members of this virus family are known through metagenomics. Virions are predicted to consist of an icosahedral capsid and a helical tail, characteristic of members in the class Caudoviricetes. Aoguangviruses have some of the largest genomes among archaeal viruses and possess most of the components of the DNA replication machinery as well as auxiliary functions. The family Aoguangviridae includes the species Aobingvirus yangshanense. Many unclassified relatives of this virus group, referred to as 'magroviruses', have been discovered by metagenomics in globally distributed marine samples. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Aoguangviridae, which is available at ictv.global/report/aoguangviridae.


Asunto(s)
Replicación Viral , Virus , Genoma Viral , Virus/genética , Virión/genética , Filogenia
13.
Microbiol Resour Announc ; 12(12): e0090423, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38009928

RESUMEN

Myxococcus xanthus is the best-studied member of the phylum Myxococcota, but the bacteriophages infecting it and their characterization remain limited. Here, we present complete genomes of Mx1, the first Myxococcus phage isolated, and of an Mx4 derivative widely used for generalized transduction, both unclassified Caudoviricetes with long, contractile tails.

14.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37894982

RESUMEN

Metagenomics provides detection of phage genome sequences in various microbial communities. However, the use of alternative genetic codes by some phages precludes the correct analysis of their genomes. In this study, the unusual phage genome (phAss-1, 135,976 bp) was found after the de novo assembly of the human gut virome. Genome analysis revealed the presence of the TAG stop codons in 41 ORFs, including characteristic phage ORFs, and three genes of suppressor tRNA. Comparative analysis indicated that no phages with similar genomes were described. However, two phage genomes (BK046881_ctckW2 and BK025033_ct6IQ4) with substantial similarity to phAss-1 were extracted from the human gut metagenome data. These two complete genomes demonstrated 82.7% and 86.4% of nucleotide identity, respectively, similar genome synteny to phAss-1, the presence of suppressor tRNA genes and suppressor TAG stop codons in many characteristic phage ORFs. These data indicated that phAss-1, BK046881_ctckW2, and BK025033_ct6IQ4 are distinct species within the proposed Phassvirus genus. Moreover, a monophyletic group of divergent phage genomes containing the proposed Phassvirus genus was found among metagenome data. Several phage genomes from the group also contain ORFs with suppressor TAG stop codons, indicating the need to use various translation tables when depositing phage genomes in GenBank.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Viroma , Codón de Terminación/genética , Genoma Viral , Código Genético , ARN de Transferencia/genética , Filogenia
15.
Viruses ; 15(9)2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766228

RESUMEN

The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).


Asunto(s)
Anelloviridae , Bacteriófagos , Lemur , Humanos , Animales , North Carolina , Proyectos Piloto , Viroma , ADN
16.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628765

RESUMEN

Bacteriophages are widely recognized as alternatives to traditional antibiotics commonly used in the treatment of bacterial infection diseases and in the food industry, as phages offer a potential solution in combating multidrug-resistant bacterial pathogens. In this study, we describe a novel bacteriophage, Kirovirus kirovense Kirov, which infects members of the Bacillus cereus group. Kirovirus kirovense Kirov is a broad-host-range phage belonging to the Caudoviricetes class. Its chromosome is a linear 165,667 bp double-stranded DNA molecule that contains two short, direct terminal repeats, each 284 bp long. According to bioinformatics predictions, the genomic DNA contains 275 protein-coding genes and 5 tRNA genes. A comparative genomic analysis suggests that Kirovirus kirovense Kirov is a novel species within the Kirovirus genus, belonging to the Andregratiavirinae subfamily. Kirovirus kirovense Kirov demonstrates the ability to preserve and decontaminate B. cereus from cow milk when present in milk at a concentration of 104 PFU/mL. After 4 h of incubation with the phage, the bacterial titer drops from 105 to less than 102 CFU/mL.


Asunto(s)
Leche , Siphoviridae , Leche/microbiología , Animales , Almacenamiento de Alimentos , Conservación de Alimentos , Bacteriófagos , Bacillus/virología , Genoma Viral , Siphoviridae/genética , Concentración de Iones de Hidrógeno
17.
Int Microbiol ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37632591

RESUMEN

Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.

18.
Viruses ; 15(7)2023 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515211

RESUMEN

The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Pseudomonas phage BSwM KMM1, Citrobacter phages BSwM KMM2-BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 showed a remarkably broad host range, infecting Gram-negative Pseudomonas as well as Gram-positive Staphylococcus. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host.


Asunto(s)
Bacteriófagos , Fagos Pseudomonas , Enterobacteriaceae , Fagos Pseudomonas/genética , ADN , Bacterias/genética , Agua de Mar , Genoma Viral
19.
Virology ; 585: 42-60, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37276766

RESUMEN

Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.


Asunto(s)
Roedores , Virus , Animales , Filogenia , Virus ADN/genética , Virus/genética , Mamíferos , Genoma Viral
20.
Arch Microbiol ; 205(5): 214, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129715

RESUMEN

Bacteriophages are often considered as possible agents of biological control of unwanted bacterial populations in medicine, agriculture and food industry. Although the virulent phages can efficiently kill the infected host cells but at the population level phage attack not always leads to the host population collapse but may result in establishment of a more or less stable co-existence. The mechanism of the long-term stabilization of the mixed phage-host cultures is poorly understood. Here we describe bacteriophages VyarbaL and Hena2, the members of the Molineuxvirinae and the Ounavirinae subfamilies, respectively, that are able to form the pseudolysogenic associations (PA) with their host Erwinia amylovora 1/79Sm on solid media. These PAs were stable through multiple passages. The phenomenon of the PA formation between a bacterial culture and bacteriophages decreases the effectiveness of bacteriophage-mediated biological control agents based on lytic bacteriophages.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Humanos , Myoviridae , Bacterias , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA