Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 575
Filtrar
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 398-406, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027123

RESUMEN

Serotonin 5-HT7 receptors (5-HT7R) are attracting increasing attention as important participants in the mechanisms of Alzheimer's disease and as a possible target for the treatment of various tau pathologies. In this study, we investigated the effects of amisulpride (5-HT7R inverse agonist) in C57BL/6J mice with experimentally induced expression of the gene encoding the aggregation-prone human Tau[R406W] protein in the prefrontal cortex. In these animals we examined short-term memory and the expression of genes involved in the development of tauopathy (Htr7 and Cdk5), as well as biomarkers of neurodegenerative processes - the Bdnf gene and its receptors TrkB (the Ntrk2 gene) and p75NTR (the Ngfr gene). In a short-term memory test, there was no difference in the discrimination index between mice treated with AAV-Tau[R406W] and mice treated with AAV-EGFP. Amisulpride did not affect this parameter. Administration of AAV-Tau[R406W] resulted in increased expression of the Htr7, Htr1a, and Cdk5 genes in the prefrontal cortex compared to AAV-EGFP animals. At the same time, amisulpride at the dose of 10 mg/kg in animals from the AAV-Tau[R406W] group caused a decrease in the Htr7, Htr1a genes mRNA levels compared to animals from the AAV-Tau[R406W] group treated with saline. A decrease in the expression of the Bdnf and Ntrk2 genes in the prefrontal cortex was revealed after administration of AAV-Tau[R406W]. Moreover, amisulpride at various doses (3 and 10 mg/kg) caused the same decrease in the transcription of these genes in mice without tauopathy. It is also interesting that in mice of the AAV-EGFP group, administration of amisulpride at the dose of 10 mg/kg increased the Ngfr gene mRNA level. The data obtained allow us to propose the use of amisulpride in restoring normal tau protein function. However, it should be noted that prolonged administration may result in adverse effects such as an increase in Ngfr expression and a decrease in Bdnf and Ntrk2 expression, which is probably indicative of an increase in neurodegenerative processes.

2.
Cell Biochem Biophys ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020088

RESUMEN

Osteoarthritis (OA) is a common chronic disease with age-associated increase in both incidence and prevalence. The cyclin-dependent kinase 5 (CDK5), which is a member of the CDK family, is involved in many chronic diseases. This study was performed to explore the functional role of CDK5 in OA and to discuss the detailed molecular mechanisms. The expressions of CDK5 and ELF3 before or after transfection were detected with reverse transcription-quantitative PCR (RT-qPCR) and western blot. 5-ethynyl-2'-deoxyuridine (Edu) and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assays were used to detect the proliferation and apoptosis of C28/I2 cells. The levels of inflammatory cytokines were estimated using enzyme-linked immunosorbent assay (ELISA) while the expressions of proteins implicated in extracellular matrix (ECM) degradation- and apoptosis were detected using western blot. Additionally, the activity of CDK5 promoters and its binding with ELF3 were detected using luciferase activity assay and chromatin immunoprecipitation (CHIP) assay. In the present study, it was discovered that the mRNA and protein expressions of CDK5 were significantly increased in IL-1ß-induced C28/I2 cells. After depleting CDK5 expression, the apoptosis, inflammation and ECM in C28/I2 cells with IL-1ß induction were suppressed. It was also found that ELF3 expression was increased in IL-1ß-induced C28/I2 cells and acted as a transcription factor binding to the CDK5 promoter to regulate its transcriptional expression. The further experiments evidenced that ELF3 overexpression partially reversed the inhibitory effects of CDK5 deficiency on IL-1ß-induced apoptosis, inflammation and ECM in C28/I2 cells. Collectively, CDK5 that upregulated by ELF3 transcription could promote the development of OA.

3.
Small ; : e2311507, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856024

RESUMEN

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.

4.
Future Med Chem ; : 1-17, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864182

RESUMEN

Aim: A new series of 1,2,3-triazole-hydrazone derivatives were developed to evaluate their anti-Alzheimer's activity. Materials & methods: All compounds were screened toward cholinesterases via the modified Ellman's method. The toxicity assay on SH-SY5Y cells was performed using the MTT assay, and the expression levels of GSK-3α, GSK-3ß, DYRK1 and CDK5 were assessed in the presence of compounds 6m and 6p. Results: 6m and 6p; acting as mixed-type inhibitors, exhibited promising acetylcholinesterase and butyrylcholinesterase inhibitory activity, respectively. 6m demonstrated no toxicity under tested concentrations on the SH-SY5Y cells and positively impacted neurodegenerative pathways. Notably, 6m displayed a significant downregulation in mRNA levels of GSK-3α, GSK-3ß and CDK5. Conclusion: The target compounds could be considered in developing anti-Alzheimer's disease agents.


[Box: see text].

5.
J Neurochem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934222

RESUMEN

Deregulated cyclin-dependent kinase 5 (Cdk5) activity closely correlates with hyperphosphorylated tau, a common pathology found in neurodegenerative diseases. Previous postmortem studies had revealed increased Cdk5 immunoreactivity in amyotrophic lateral sclerosis (ALS); hence, we investigated the effects of Cdk5 inhibition on ALS model mice and neurons in this study. For the in vitro study, motor neuron cell lines with wild-type superoxide dismutase 1 (SOD1) or SOD1G93A and primary neuronal cultures from SOD1G93A transgenic (TG) mice or non-TG mice were compared for the expression of proteins involved in tau pathology, neuroinflammation, apoptosis, and neuritic outgrowth by applying Cdk5-small interfering RNA or Cdk5-short hairpin RNA (shRNA). For the in vivo study, SOD1G93A mice and non-TG mice were intrathecally injected with adeno-associated virus 9 (AAV9)-scramble (SCR)-shRNA or AAV9-Cdk5-shRNA at the age of 5 weeks. Weight and motor function were measured three times per week from 60 days of age, longevity was evaluated, and the tissues were collected from 90-day-old or 120-day-old mice. Neurons with SOD1G93A showed increased phosphorylated tau, attenuated neuritic growth, mislocalization of SOD1, and enhanced neuroinflammation and apoptosis, all of which were reversed by Cdk5 inhibition. Weights did not show significant differences among non-TG and SOD1G93A mice with or without Cdk5 silencing. SOD1G93A mice treated with AAV9-Cdk5-shRNA showed significantly delayed disease onset, delayed rotarod failure, and prolonged survival compared with those treated with AAV9-SCR-shRNA. The brain and spinal cord of SOD1G93A mice intrathecally injected with AAV9-Cdk5-shRNA exhibited suppressed tau pathology, neuroinflammation, apoptosis, and an increased number of motor neurons compared to those of SOD1G93A mice injected with AAV9-SCR-shRNA. Cdk5 inhibition could be an important mechanism in the development of a new therapeutic strategy for ALS.

6.
Biol Open ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38912559

RESUMEN

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.


Asunto(s)
Axones , Quinasa 5 Dependiente de la Ciclina , Mitocondrias , Animales , Mitocondrias/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Axones/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Segmento Inicial del Axón/metabolismo , Cuerpos Pedunculados/metabolismo , Degeneración Nerviosa , Neuronas/metabolismo , Drosophila melanogaster/metabolismo
7.
Mol Neurobiol ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937422

RESUMEN

Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology. We obtained a heterozygous CDK5+/- clone for the FN2.1 hiPSC line that retained hiPSC stemness and pluripotent potential. Then, neural stem cells (NSCs) and further neurons were derived from the CDK5+/- KO FN2.1 hiPSCs, and their phenotype was validated by immunofluorescence staining using antibodies that recognize lineage-specific markers (SOX-1, SOX-2, and NESTIN for NSCs and TUJ-1, MAP-5, and MAP-2 for neurons). We found that the proliferation rate increased in CDK5+/- KO hiPSC-derived neurons concomitantly with a reduction in NEUN and P35 expression levels. However, the morphometric analysis revealed that CDK5 deficiency caused an increase in the length of the main, primary, and secondary neurites and the neuronal soma area. As a whole, we found that a deficit in CDK5 does not impair hiPSC neuronal differentiation but deregulates proliferation and neurite outgrowth, favoring elongation. The misregulated activity of specific kinases leads to abnormalities such as impaired axonal connectivity in neurodegenerative diseases. Thus, therapeutic approaches aimed at normalizing the activity of kinases, such as CDK5, may help prevent the degeneration of vulnerable neurons.

8.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915521

RESUMEN

Cdk5 is a highly-conserved, noncanonical cell division kinase important to the terminal differentiation of mammalian cells in multiple organ systems. We previously identified Pef1, the Schizosaccharomyces pombe ortholog of cdk5, as regulator of chronological lifespan. To reveal the processes impacted by Pef1, we developed APEX2-biotin phenol-mediated proximity labeling in S. pombe. Efficient labeling required a short period of cell wall digestion and eliminating glucose and nitrogen sources from the medium. We identified 255 high-confidence Pef1 neighbors in growing cells and a novel Pef1-interacting partner, the DNA damage response protein Rad24. The Pef1-Rad24 interaction was validated by reciprocal proximity labeling and co-immunoprecipitation. Eliminating Pef1 partially rescued the DNA damage sensitivity of cells lacking Rad24. To monitor how Pef1 neighbors change under different conditions, cells induced for autophagy were labeled and 177 high-confidence Pef1 neighbors were identified. Gene ontology (GO) analysis of the Pef1 neighbors identified proteins participating in processes required for autophagosome expansion including regulation of actin dynamics and vesicle-mediated transport. Some of these proteins were identified in both exponentially growing and autophagic cells. Pef1-APEX2 proximity labeling therefore identified a new Pef1 function in modulating the DNA damage response and candidate processes that Pef1 and other cdk5 orthologs may regulate.

9.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38842132

RESUMEN

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Enfermedad de Parkinson , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Animales , Calpaína/metabolismo , Calpaína/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Ecotoxicol Environ Saf ; 279: 116446, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772138

RESUMEN

The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Inflamación , Mitofagia , Transducción de Señal , Animales , Masculino , Ratones , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Línea Celular , Quinasa 5 Dependiente de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Enfermedad de Parkinson
11.
Mol Neurobiol ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789892

RESUMEN

Alzheimer's disease (AD) is a common progressive degenerative disease of the central nervous system in aging populations. This study aimed to investigate the effects of combined catalpol and tetramethylpyrazine (CT) in promoting axonal plasticity in AD and the potential underlying mechanism. Astrocytes were treated with different concentrations of compatible CT. Exosomes were collected and subjected to sequencing analysis, which was followed by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed genes. Amyloid precursor protein/presenilin 1 (APP/PS1) double-transfected male mice were used as the in vivo AD models. Astrocyte-derived exosomes that were transfected with cyclin-dependent kinase 5 (CDK5) or CT treatment were injected into the tail vein of mice. The levels of CDK5, synaptic plasticity marker protein neurofilament 200 (NF200), and growth-associated protein 43 (GAP-43) in the hippocampus of mice were compared in each group. Immunofluorescence staining was used to detect the localization of STAT3 and to visualize synaptic morphology via ß-tubulin-III (TUBB3). Astrocyte-derived exosomes transfected with siCDK5 or treated with CT were co-cultured with HT-22 cells, which were untransfected or silenced for signal transducer and activator of transcription 3 (STAT3). Amyloid ß-protein (Aß)1-42 was induced in the in vitro AD models. The viability, apoptosis, and expression levels of NF200 and GAP-43 proteins in the hippocampal neurons of each group were compared. In total, 166 differentially expressed genes in CT-induced astrocyte-derived exosomes were included in the KEGG analysis, and they were found to be enriched in 12 pathways, mainly in axon guidance. CT treatment significantly increased the level of CDK5 mRNA in astrocyte-derived exosomes-these exosomes restored CDK5 mRNA and protein levels in the hippocampus of the in vivo AD model mice and the in vitro AD model; promoted p-STAT3 (Ser727), NF200 and GAP-43 proteins; and promoted the regeneration and extension of neuronal synapses. Silencing of CDK5 blocked both neuronal protection as well as induction of axonal plasticity in AD by CT-treated exosomes in vitro and in vivo. Moreover, silencing of STAT3 blocked both neuronal protection as well as induction of axonal plasticity in AD caused by CDK5 overexpression or CT-treated astrocyte-induced exosomes. CT promotes axonal plasticity in AD by inducing astrocytes to secrete exosomes carrying CDK5 mRNA and regulating STAT3 (Ser727) phosphorylation.

12.
Int J Biol Sci ; 20(7): 2440-2453, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725860

RESUMEN

Glioblastoma is the prevailing and highly malignant form of primary brain neoplasm with poor prognosis. Exosomes derived from glioblastoma cells act a vital role in malignant progression via regulating tumor microenvironment (TME), exosomal tetraspanin protein family members (TSPANs) are important actors of cell communication in TME. Among all the TSPANs, TSPAN6 exhibited predominantly higher expression levels in comparison to normal tissues. Meanwhile, glioblastoma patients with high level of TSPAN6 had shorter overall survival compared with low level of TSPAN6. Furthermore, TSPAN6 promoted the malignant progression of glioblastoma via promoting the proliferation and metastatic potential of glioblastoma cells. More interestingly, TSPAN6 overexpression in glioblastoma cells promoted the migration of vascular endothelial cell, and exosome secretion inhibitor reversed the migrative ability of vascular endothelial cells enhanced by TSPAN6 overexpressing glioblastoma cells, indicating that TSPAN6 might reinforce angiogenesis via exosomes in TME. Mechanistically, TSPAN6 enhanced the malignant progression of glioblastoma by interacting with CDK5RAP3 and regulating STAT3 signaling pathway. In addition, TSPAN6 overexpression in glioblastoma cells enhanced angiogenesis via regulating TME and STAT3 signaling pathway. Collectively, TSPAN6 has the potential to serve as both a therapeutic target and a prognostic biomarker for the treatment of glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Factor de Transcripción STAT3 , Transducción de Señal , Tetraspaninas , Animales , Humanos , Ratones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Progresión de la Enfermedad , Exosomas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Factor de Transcripción STAT3/metabolismo , Tetraspaninas/metabolismo , Tetraspaninas/genética
13.
Neurogenetics ; 25(3): 179-191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795246

RESUMEN

Primary microcephaly is a rare neurogenic and genetically heterogeneous disorder characterized by significant brain size reduction that results in numerous neurodevelopmental disorders (NDD) problems, including mild to severe intellectual disability (ID), global developmental delay (GDD), seizures and other congenital malformations. This disorder can arise from a mutation in genes involved in various biological pathways, including those within the brain. We characterized a recessive neurological disorder observed in nine young adults from five independent consanguineous Pakistani families. The disorder is characterized by microcephaly, ID, developmental delay (DD), early-onset epilepsy, recurrent infection, hearing loss, growth retardation, skeletal and limb defects. Through exome sequencing, we identified novel homozygous variants in five genes that were previously associated with brain diseases, namely CENPJ (NM_018451.5: c.1856A > G; p.Lys619Arg), STIL (NM_001048166.1: c.1235C > A; p.(Pro412Gln), CDK5RAP2 (NM_018249.6 c.3935 T > G; p.Leu1312Trp), RBBP8 (NM_203291.2 c.1843C > T; p.Gln615*) and CEP135 (NM_025009.5 c.1469A > G; p.Glu490Gly). These variants were validated by Sanger sequencing across all family members, and in silico structural analysis. Protein 3D homology modeling of wild-type and mutated proteins revealed substantial changes in the structure, suggesting a potential impact on function. Importantly, all identified genes play crucial roles in maintaining genomic integrity during cell division, with CENPJ, STIL, CDK5RAP2, and CEP135 being involved in centrosomal function. Collectively, our findings underscore the link between erroneous cell division, particularly centrosomal function, primary microcephaly and ID.


Asunto(s)
Proteínas de Ciclo Celular , Discapacidad Intelectual , Microcefalia , Linaje , Humanos , Microcefalia/genética , Discapacidad Intelectual/genética , Masculino , Femenino , Proteínas de Ciclo Celular/genética , Adulto , Proteínas Cromosómicas no Histona/genética , Proteínas del Tejido Nervioso/genética , División Celular/genética , Mutación , Péptidos y Proteínas de Señalización Intracelular/genética , Genómica , Adulto Joven , Consanguinidad , Secuenciación del Exoma , Homocigoto , Discapacidades del Desarrollo/genética , Adolescente , Pakistán , Proteínas Asociadas a Microtúbulos
14.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731841

RESUMEN

Plutella xylostella (Linnaeus) mainly damages cruciferous crops and causes huge economic losses. Presently, chemical pesticides dominate its control, but prolonged use has led to the development of high resistance. In contrast, the sterile insect technique provides a preventive and control method to avoid the development of resistance. We discovered two genes related to the reproduction of Plutella xylostella and investigated the efficacy of combining irradiation with RNA interference for pest management. The results demonstrate that after injecting PxAKT and PxCDK5, there was a significant decrease of 28.06% and 25.64% in egg production, and a decrease of 19.09% and 15.35% in the hatching rate compared to the control. The ratio of eupyrene sperm bundles to apyrene sperm bundles also decreased. PxAKT and PxCDK5 were identified as pivotal genes influencing male reproductive processes. We established a dose-response relationship for irradiation (0-200 Gy and 200-400 Gy) and derived the irradiation dose equivalent to RNA interference targeting PxAKT and PxCDK5. Combining RNA interference with low-dose irradiation achieved a sub-sterile effect on Plutella xylostella, surpassing either irradiation or RNA interference alone. This study enhances our understanding of the genes associated with the reproduction of Plutella xylostella and proposes a novel approach for pest management by combining irradiation and RNA interference.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina , Mariposas Nocturnas , Proteínas Proto-Oncogénicas c-akt , Interferencia de ARN , Animales , Femenino , Masculino , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fertilidad/efectos de la radiación , Fertilidad/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Reproducción/efectos de la radiación , Reproducción/genética
15.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764131

RESUMEN

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Modelos Moleculares , Nitrilos/química , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Humanos
16.
J Inflamm Res ; 17: 2513-2530, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699595

RESUMEN

Purpose: Explore the therapeutic effects and regulatory mechanism of Qingyi Decoction (QYD) on severe acute pancreatitis (SAP) associated acute lung injury (ALI). Methods: We identified the constituents absorbed into the blood of QYD based on a network pharmacological strategy. The differentially expressed genes from the GEO database were screened to identify the critical targets of QYD treatment of SAP-ALI. The SAP-ALI rat model was constructed.Some methods were used to evaluate the efficacy and mechanism of QYD in treating SAP-ALI. LPS-stimulated pulmonary microvascular endothelial cell injury simulated the SAP-induced pulmonary endothelial injury model. We further observed the therapeutic effect of QYD and CDK5 plasmid transfection on endothelial cell injury. Results: 18 constituents were absorbed into the blood, and 764 targets were identified from QYD, 25 of which were considered core targets for treating SAP-ALI. CDK5 was identified as the most critical gene. The results of differential expression analysis showed that the mRNA expression level of CDK5 in the blood of SAP patients was significantly up-regulated compared with that of healthy people. Animal experiments have demonstrated that QYD can alleviate pancreatic and lung injury inflammatory response and reduce the upregulation of CDK5 in lung tissue. QYD or CDK5 inhibitors could decrease the expression of NFAT5 and GEF-H1, and increase the expression of ACE-tub in SAP rat lung tissue. Cell experiments proved that QYD could inhibit the expression of TNF-α and IL-6 induced by LPS. Immunofluorescence results suggested that QYD could alleviate the cytoskeleton damage of endothelial cells, and the mechanism might be related to the inhibition of CDK5-mediated activation of NFAT5, GEF-H1, and ACE-tub. Conclusion: CDK5 has been identified as a critical target for pulmonary endothelial injury of SAP-ALI. QYD may partially alleviate microtubule disassembly by targeting the CDK5/NFAT5/GEF-H1 signaling pathway, thus relieving SAP-induced pulmonary microvascular endothelial cell injury.

17.
Chemosphere ; 358: 142124, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677614

RESUMEN

Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.


Asunto(s)
Proliferación Celular , Quinasa 5 Dependiente de la Ciclina , Metformina , Neocórtex , Metformina/farmacología , Animales , Femenino , Embarazo , Neocórtex/efectos de los fármacos , Quinasa 5 Dependiente de la Ciclina/metabolismo , Ratas , Proliferación Celular/efectos de los fármacos , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Diferenciación Celular/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
18.
Am J Physiol Cell Physiol ; 326(6): C1648-C1658, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682237

RESUMEN

The authors' previous research has shown the pivotal roles of cyclin-dependent kinase 5 (CDK5) and its regulatory protein p35 in nerve growth factor (NGF)-induced differentiation of sympathetic neurons in PC12 cells. During the process of differentiation, neurons are susceptible to environmental influences, including the effects of drugs. Metformin is commonly used in the treatment of diabetes and its associated symptoms, particularly in diabetic neuropathy, which is characterized by dysregulation of the sympathetic neurons. However, the impacts of metformin on sympathetic neuronal differentiation remain unknown. In this study, we investigated the impact of metformin on NGF-induced sympathetic neuronal differentiation using rat pheochromocytoma PC12 cells as a model. We examined the regulation of TrkA-p35/CDK5 signaling in NGF-induced PC12 differentiation. Our results demonstrate that metformin reduces NGF-induced PC12 differentiation by inactivating the TrkA receptor, subsequently inhibiting ERK and EGR1. Inhibition of this cascade ultimately leads to the downregulation of p35/CDK5 in PC12 cells. Furthermore, metformin inhibits the activation of the presynaptic protein Synapsin-I, a substrate of CDK5, in PC12 differentiation. In addition, metformin alters axonal and synaptic bouton formation by inhibiting p35 at both the axons and axon terminals in fully differentiated PC12 cells. In summary, our study elucidates that metformin inhibits sympathetic neuronal differentiation in PC12 cells by disrupting TrkA/ERK/EGR1 and p35/CDK5 signaling. This research contributes to uncovering a novel signaling mechanism in drug response during sympathetic neuronal differentiation, enhancing our understanding of the intricate molecular processes governing this critical aspect of neurodevelopment.NEW & NOTEWORTHY This study unveils a novel mechanism influenced by metformin during sympathetic neuronal differentiation. By elucidating its inhibitory effects from the nerve growth factor (NGF) receptor, TrkA, to the p35/CDK5 signaling pathways, we advance our understanding of metformin's mechanisms of action and emphasize its potential significance in the context of drug responses during sympathetic neuronal differentiation.


Asunto(s)
Diferenciación Celular , Quinasa 5 Dependiente de la Ciclina , Metformina , Factor de Crecimiento Nervioso , Neuronas , Receptor trkA , Animales , Metformina/farmacología , Ratas , Células PC12 , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/farmacología , Receptor trkA/metabolismo , Receptor trkA/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Fosfotransferasas
19.
Front Cell Dev Biol ; 12: 1371568, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606319

RESUMEN

The mammalian brain, especially the cerebral cortex, has evolved to increase in size and complexity. The proper development of the cerebral cortex requires the coordination of several events, such as differentiation and migration, that are essential for forming a precise six-layered structure. We have previously reported that Cdk5-mediated phosphorylation of JIP1 at T205 modulates axonal out-growth. However, the spatiotemporal expression patterns and functions of these three genes (Cdk5, Cdk5r1 or p35, and Mapk8ip1 or JIP1) in distinct cell types during cortical development remain unclear. In this study, we analyzed single-cell RNA-sequencing data of mouse embryonic cortex and discovered that Cdk5, p35, and JIP1 are dynamically expressed in intermediate progenitors (IPs). Pseudotime analysis revealed that the expression of these three genes was concomitantly upregulated in IPs during neuronal migration and differentiation. By manipulating the expression of JIP1 and phospho-mimetic JIP1 using in utero electroporation, we showed that phosphorylated JIP1 at T205 affected the temporal migration of neurons.

20.
Vet Microbiol ; 292: 110071, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574695

RESUMEN

Duck Tembusu virus (DTMUV) is a newly emerging pathogen that causes massive economic losses to the poultry industry in China and neighbouring countries. Vimentin, an intermediate filament protein, has been demonstrated to be involved in viral replication during infection. However, the specific role of vimentin in DTMUV replication has not been determined. In this study, we found that overexpression of vimentin in BHK-21 cells can inhibit DTMUV replication. Moreover, DTMUV replication was enhanced after vimentin expression was reduced in BHK-21 cells via small interfering RNA (siRNA). Further research indicated that DTMUV infection had no effect on the transcription or expression of vimentin. However, we found that DTMUV infection induced vimentin rearrangement, and the rearrangement of vimentin was subsequently confirmed to negatively modulate viral replication through the use of a vimentin network disrupting agent. Vimentin rearrangement is closely associated with its phosphorylation. Our experiments revealed that the phosphorylation of vimentin at Ser56 was promoted in the early stage of DTMUV infection. In addition, by inhibiting the phosphorylation of vimentin at Ser56 with a CDK5 inhibitor, vimentin rearrangement was suppressed, and DTMUV replication was significantly enhanced. These results indicated that DTMUV infection induced vimentin phosphorylation and rearrangement through CDK5, resulting in the inhibition of DTMUV replication. In summary, our study reveals a role for vimentin as a negative factor in the process of DTMUV replication, which helps to elucidate the function of cellular proteins in regulating DTMUV replication.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Enfermedades de las Aves de Corral , Animales , Patos , Vimentina/genética , Flavivirus/fisiología , Infecciones por Flavivirus/veterinaria , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA