Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.124
Filtrar
1.
Brain Behav Immun Health ; 41: 100871, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39350954

RESUMEN

Introduction: Different lines of evidence confirm the involvement of the immune system in the pathophysiology of major depressive disorder. Up to 30% of depressed patients present with an immune-mediated subtype, characterized by peripheral inflammation (high-sensitive C-reactive protein (hsCRP) ≥ 3 mg/l) and an atypical symptom profile with fatigue, anhedonia, increased appetite, and hypersomnia. This immune-mediated subtype of MDD is associated with poorer response to first-line antidepressant treatment. Consequently, strategies for immune-targeted augmentation should be prioritised towards patients with this subtype. Meta-analyses have shown modest but heterogeneous treatment effects with immune-targeted augmentation in unstratified MDD cohorts, with celecoxib and minocycline as most promising first-line treatment options. However, no study has prospectively evaluated the effectiveness of a priori stratification by baseline inflammation levels for add-on celecoxib or minocycline in MDD. Methods: The INSTA-MD trial is a multicentre, 12-week, randomised, double-blind, placebo-controlled, parallel-group stratified clinical trial of adjunctive minocycline or celecoxib to treatment-as-usual for patients with MDD. Two hundred forty adult patients with Major Depressive Disorder who failed to remit with one or two trials of antidepressant treatment will be enrolled and allocated to high-hsCRP (hsCRP ≥3 mg/L) or low-hsCRP (hsCRP <3 mg/L) strata, where disproportional stratified sampling will ensure equally sized strata. Participants in each hsCRP stratum will be randomised to augment their ongoing antidepressant treatment with either adjunctive minocycline, celecoxib or placebo for a duration of 12 weeks, resulting in six treatment arms of each 40 participants. The primary objective is to evaluate the efficacy of immune-targeted augmentation with minocycline or celecoxib versus placebo, and the use of baseline hsCRP stratification to predict treatment response. Additionally, we will perform a head-to-head analysis between the two active compounds. The primary outcome measure is change in the Hamilton Depression Rating Scale (HDRS-17) total score. Secondary outcome measures will be response and remission rates, and change in inflammation-specific symptoms, adverse events and therapy acceptability (adherence). Further exploratory analyses will be performed with an array of peripheral inflammatory biomarkers, metabolic outcomes and physiological data. Expected impact: The aim of INSTA-MD is to advance the use of immune-targeted precision psychiatry, by supporting the implementation of targeted hsCRP screening and treatment of immune-mediated MDD as a cost-effective intervention in primary care settings. Based on previous studies, we expect immune-targeted augmentation with minocycline or celecoxib to yield a superior remission rate of 15-30% compared to treatment as usual for immune-mediated cases of MDD. By treating immune-related depression early in the treatment algorithm with repurposed first-line anti-inflammatory treatments, we can significantly improve the outcomes of these patients, and reduce the global societal and economic burden of depression. Ethics and dissemination: This protocol has been approved by the Medical Ethics Review Board (CTR - 04/08/2023). Registration details: Trial registration number NCT05644301 (Clinical trial.gov), EU-CT 2022-501692-35-00.

2.
Discov Nano ; 19(1): 142, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240502

RESUMEN

Cancer is highlighted as a major global health challenge in the XXI century. The cyclooxygenase-2 (COX-2) enzyme rises as a widespread tumor progression marker. Celecoxib (CXB) is a selective COX-2 inhibitor used in adjuvant cancer therapy, but high concentrations are required in humans. In this sense, the development of nanocarriers has been proposed once they can improve the biopharmaceutical, pharmacokinetic and pharmacological properties of drugs. In this context, this article reviews the progress in the development of CXB-loaded nanocarriers over the past decade and their prospects. Recent advances in the field of CXB-loaded nanocarriers demonstrate the use of complex formulations and the increasing importance of in vivo studies. The types of CXB-loaded nanocarriers that have been developed are heterogeneous and based on polymers and lipids together or separately. It was found that the work on CXB-loaded nanocarriers is carried out using established techniques and raw materials, such as poly (lactic-co-glicolic acid), cholesterol, phospholipids and poly(ethyleneglycol). The main improvements that have been achieved are the use of cell surface ligands, the simultaneous delivery of different synergistic agents, and the presence of materials that can provide imaging properties and other advanced features. The combination of CXB with other anti-inflammatory drugs and/or apoptosis inducers appears to hold effective pharmacological promise. The greatest advance to date from a clinical perspective is the ability of CXB to enhance the cytotoxic effects of established chemotherapeutic agents.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39225209

RESUMEN

BACKGROUND: Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity. AIM: This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth in vivo. OBJECTIVE: The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity. METHODS: Anticancer activity of RF26 was studied using human CRC cell lines. Its effects on intracellular cGMP levels, cGMP-dependent protein kinase (PKG) activity, ß-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target. RESULTS: RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that increased intracellular cGMP levels and activated PKG signaling. RF26 suppressed ß-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice. CONCLUSION: Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.

4.
J Taibah Univ Med Sci ; 19(4): 856-866, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39253362

RESUMEN

Objective: Oxidative stress develops because of a shift in the prooxidant-antioxidant balance toward the former, because of disturbances in redox signaling and control. Celecoxib (Cb), a selective COX-2 inhibitor, is a drug that effectively decreases pain and inflammation. However, Cb causes oxidative injury to hepatic tissues via enhanced lipid peroxidation, thus resulting in excessive production of reactive oxygen species. Consequently, frequent or long-term Cb use may lead to hepatic, renal, and other noticeable adverse effects. Lycopene (lyco), a potent antioxidant naturally occurring in pigmented fruits and vegetables, actively eradicates singlet oxygen and other free radicals, thereby protecting cells against destruction of the plasma membrane by free radicals. Methods: We hypothesized that lyco might protect rat liver cells against Cb-induced oxidative stress, thus reducing fatty infiltration and glycogen depletion. Rats were randomized into three groups (with ten rats each) receiving control (group A, saline only), Cb (group B, 50 mg/kg, orally), or Cb + lyco (group C, 50 mg/kg, orally) for 30 days. Subsequently, liver tissues were examined, and the average liver weight and histological changes in fat and glycogen content were determined. Results: Lyco mitigated hepatocyte damage in Cb-treated rats, reducing fat accumulation and glycogen loss, probably through its antioxidant properties. Concomitant lyco and Cb intake prevented hepatotoxic adverse effects due to oxidative injury, as well as non-alcoholic fatty liver disease (NAFLD), a key component of metabolic syndrome. Moreover, the binding orientation of lyco in the binding site of COX-2 enzyme revealed that the docked complex had noteworthy binding strength. Conclusion: In conclusion, our study revealed lyco's protective effects against Cb-induced hepatic damage by reducing fat and glycogen depletion.

5.
Brain Behav Immun ; 123: 43-56, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243988

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a highly prevalent condition with a substantial incidence of relapse or treatment resistance. A subset of patients show evidence of low-grade inflammation, with these patients having a higher likelihood of more severe or difficult to treat courses of illness. Anti-inflammatory treatment of MDD has been investigated with mixed results, and no known studies have included assessments beyond cessation of the anti-inflammatory agent, meaning it remains unknown if any benefit from treatment persists. The objective of the present study was to investigate treatment outcomes up to 29 weeks post-cessation of celecoxib or placebo augmentation of an antidepressant, and how concentrations of selected inflammatory markers change over the same period. METHODS: The PREDDICT parallel-group, randomised, double-blind, placebo-controlled trial (University of Adelaide, Australia) ran from December 2017 to April 2020. Participants with MDD were stratified into normal range or elevated inflammation strata according to screening concentrations of high sensitivity C-reactive protein (hsCRP). Participants were randomised to treatment with vortioxetine and celecoxib or vortioxetine and placebo for six weeks, and vortioxetine alone for an additional 29 weeks (35 total weeks). Following a previous publication of results from the six-week RCT phase, exploratory analyses were performed on Montgomery-Åsberg Depression Rating Scale (MADRS) scores, response and remission outcomes, and selected peripheral inflammatory markers across the entire study duration up to week 35. RESULTS: Participants retained at each observation were baseline N=119, week 2 N=115, week 4 N=103, week 6 N=104, week 8 N=98, week 22 N=81, and week 35 N=60. Those in the elevated hsCRP celecoxib-augmented group had a statistically significantly greater reduction in MADRS score from baseline to week 35 compared to all other groups, demonstrating the greatest clinical improvement long-term, despite no group or strata differences at preceding time points. Response and remission outcomes did not differ by treatment group or hsCRP strata at any time point. Changes in hsCRP between baseline and week 35 and Tumour Necrosis Factor-α (TNF-α) concentrations between baseline and week 6 and baseline and week 35 were statistically significantly associated with MADRS scores observed at week 6 and week 35 respectively, with reducing TNF-α concentrations associated with reducing MADRS scores and vice versa in each case. A post-hoc stratification of the participant cohort by baseline TNF-α concentrations led to significant prediction by the derived strata on clinical response at weeks 6, 8 and 35, with participants with elevated baseline TNF-α less likely to achieve clinical response. INTERPRETATION: The present analysis suggests for the first time a possible longer-term clinical benefit of celecoxib augmentation of vortioxetine in inflammation-associated MDD treatment. However, further research is needed to confirm the finding and to ascertain the reason for such a delayed effect. Furthermore, the trial suggests that TNF-α may have a stronger relationship with anti-inflammatory MDD treatment outcomes than hsCRP, and should be investigated further for potential predictive utility. CLINICAL TRIALS REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR), ACTRN12617000527369p. Registered on 11 April 2017, http://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12617000527369p.

6.
J Control Release ; 375: 316-330, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39251139

RESUMEN

In addition to residual tumor cells, surgery-induced inflammation significantly contributes to tumor recurrence and metastasis by recruiting polymorphonuclear neutrophils (PMNs) and promoting their involvement in tumor cell proliferation, invasion and immune evasion. Efficiently eliminating residual tumor cells while concurrently intervening in PMN function represents a promising approach for enhanced postoperative cancer treatment. Here, a chitosan/polyethylene oxide electrospun fibrous scaffold co-delivering celecoxib (CEL) and doxorubicin-loaded tumor cell-derived microparticles (DOX-MPs) is developed for postoperative in-situ treatment in breast cancer. This implant (CEL/DOX-MPs@CP) ensures prolonged drug retention and sustained release within the surgical tumor cavity. The released DOX-MPs effectively eliminate residual tumor cells, while the released CEL inhibits the function of inflammatory PMNs, suppressing their promotion of residual tumor cell proliferation, migration and invasion, as well as remodeling the tumor immune microenvironment. Importantly, the strategy is closely associated with interference in neutrophil extracellular trap (NET) released from inflammatory PMNs, leading to a substantial reduction in postoperative tumor recurrence and metastasis. Our results demonstrate that CEL/DOX-MPs@CP holds great promise as an implant to enhance the prognosis of breast cancer patients following surgery.

7.
Inflammopharmacology ; 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340691

RESUMEN

BACKGROUND: The clinical presentations of Parkinson's disease (PD), a chronic neurodegenerative condition, include bradykinesia, hypokinesia, stiffness, resting tremor, and postural instability. Recently, neuroinflammation is involved in pathogenesis of PD. Application of nonsteroidal anti-inflammatory drugs captured attention to treat these neuroinflammation. AIM: To investigate the possible effectiveness of celecoxib in patients with PD treated with conventional treatment. METHODS: Sixty outpatients who fulfilled the inclusion requirements for PD were enrolled in this randomized, prospective, and controlled study. The patients were allocated into two groups at random (n = 30); the control group received standard PD treatment, consisting of levodopa/carbidopa, and the celecoxib group received standard PD treatment plus celecoxib. A neurologist evaluated each patient at the beginning of the treatment and after 6 months. Assessment of Unified Parkinson's disease rating scale (UPDRS) for each patient. Before and after treatment, α -synuclein (α-Syn), tumor necrosis factor alpha (TNF-α), Toll like receptors-4 (TLR-4), nuclear factor erythroid 2-related factor 2 (Nrf-2) and brain-derived neurotropic factor (BDNF) were assessed. Paired and unpaired t tests were used to assess statistical significance within and between groups respectively. RESULTS: The celecoxib group exhibited a significant and statistical reduction in the level of measured parameters by unpaired t test as followed: TLR-4 (p = 0.004), TNF-α (p = 0.042), and α-Syn (p = 0.004) apart from a significant increase in BDNF (p = 0.0005) and Nrf-2 (p = 0.004), in comparison with the control group. Also, UPDRS was significantly decreased in celecoxib group (p < 0.05). CONCLUSION: Celecoxib could be a promising adjuvant therapy in managing patients with PD. TRIAL REGISTRATION NUMBER: NCT05962957.

8.
J Ethnopharmacol ; 337(Pt 2): 118843, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303963

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoarthritis (OA) is the most prevalent type of arthritis worldwide and a leading cause of years lost to pain and disability. Among the current pharmacological treatments for OA, symptomatic slow-acting drugs for OA (SYSADOA) induce pain relief and aim to improve joint function by relieving inflammation while causing fewer gastrointestinal and cardiovascular adverse events than non-steroidal anti-inflammatory drugs (NSAIDs). SKCPT is a herbal SYSADOA formulated from Clematis mandshurica, Trichosanthes kirilowii, and Prunella vulgaris powdered extracts. This preparation has been shown to induce cartilage protection and anti-inflammatory effects in preclinical studies and inhibit glycosaminoglycan degradation and catabolic gene expression in human OA chondrocytes and cartilage. AIM OF THE STUDY: We aimed to evaluate the non-inferiority of SKCPT to celecoxib and safety for treating knee OA. MATERIALS AND METHODS: This multicenter, randomized, double-blind, phase III clinical trial enrolled adults with primary knee OA who were randomized (1:1) to SKCPT 300 mg twice daily or celecoxib 200 mg once daily for 12 weeks. RESULTS: In total, 278 patients were assigned to treatment (SKCPT, 136; celecoxib, 142) for approximately 12 weeks. The primary endpoint was the mean change of Korean Western Ontario and McMaster Universities Osteoarthritis Index (K-WOMAC) pain subscale scores from baseline to Day 84. The mean change (least squares [LS] mean ± standard error) from baseline to Day 84 was -23.74 ± 1.48 for SKCPT and -25.88 ± 1.44 for celecoxib. The two-sided 95% confidence interval of the difference (LS mean) between groups was [-1.94, 6.20], confirming that the upper limit was less than the non-inferiority margin of 10. Additionally, there were no significant differences in the secondary endpoints (mean changes of K-WOMAC pain, physical, stiffness subscale, and total score, and the frequency and number of doses of rescue medications) between groups at all time points. Differences between groups in adverse events and adverse drug reactions were not significant, and no serious adverse events occurred. CONCLUSIONS: SKCPT efficacy was non-inferior, and its safety profile was similar, to celecoxib. Building on previous results showing that SYSADOA reduce NSAID intake, the present results suggest that the SYSADOA SKCPT could effectively replace NSAIDs in knee OA treatment while avoiding long-term side effects.

9.
Arch Pharm (Weinheim) ; : e2400632, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39344208

RESUMEN

Liposomes have been reported for combination therapy due to their ability to carry both hydrophilic and lipophilic drugs together. The current investigation aims to develop a novel, eco-friendly, and sustainable reverse-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous quantification of capecitabine and celecoxib co-encapsulated in liposomes. The method reported herein uses a C18 column (4.6 × 250 mm2, 5 µm) and a mobile phase consisting of water, and acetonitrile/methanol in a ratio of 60:40, containing 0.1% formic acid in both the phases. The flow rate is maintained at 1 mL/min, with an injection volume of 10 µL in the gradient mode. Detection is set at λmax = 240 nm for capecitabine and 252 nm for celecoxib. The developed liposomes are mono-disperse with a surface potential of -6.93 mV. The average size of the liposomes is 142 nm. The percentage entrapment efficiency for capecitabine is 52.39 ± 0.94%, and for celecoxib, it is 77.13 ± 0.74%. The Analytical Greenness Metric of 0.61 and Analytical Eco-Scale Score of 75 signify the greenness of the developed method. Also, the Red-Green-Blue model shows excellent whiteness, with a score of 83.2. Thus, the developed method offers a reliable, accurate, precise, buffer-free, and environment-friendly RP-HPLC approach for the simultaneous analysis of capecitabine and celecoxib co-encapsulated in liposomes.

10.
Curr Pharm Des ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39206485

RESUMEN

BACKGROUND AND OBJECTIVE: Alzheimer's Disease (AD) is an enervating and chronic progressive neurodegenerative disorder. Celecoxib (CXB) possesses efficacious antioxidants and has neuroprotective, anti- inflammatory, and immunomodulatory properties. However, the poor bioavailability of CXB limits its therapeutic utility. Thus, this study aimed to evaluate the microencapsulated celecoxib MCXB) for neuroprotection. METHODOLOGY: CXB was screened by molecular docking study using AutoDock (version 5.2), and the following proteins, such as 4EY7, 2HM1, 2Z5X, and 1PBQ were selected for predicting its neuroprotective effect. Scopolamine 20 mg/kg/day for approximately 7 days was administered to albino rats. Pure CXB 100 mg/kg/- day and 200 mg/kg/day, and MCXB 100 mg/kg/day and 200 mg/kg/day were administered, respectively. Further, to assess the oxidative stress, the nitric oxide (NO), superoxide dismutase (SOD), catalase, and lipid peroxidation (LPO) were evaluated using chemical methods. The neurochemical biomarkers like AChE, glutamate, and dopamine were evaluated using the ELISA method. Further, the histopathology of brain cells was carried out to assess the neuro-regeneration and neurodegeneration of the neurons. RESULTS: There was a significant binding interaction of CXB (score -6.3, -6.5, -5.1, -9.1) and donepezil (score- 5.5, -7.6, -7.0, and -8.6) with AchE (4EY7), ß-secretase (2HM1, monoamine oxidase (2Z5X), and glutamate (1PBQ), respectively. MCXB-treated rats (100 mg/kg/day, 200 mg/kg/day) showed increased SOD levels (p < 0.001), whereas NO, catalase, and LPO levels were significantly (p < 0.001) decreased as compared to scopolamine-treated rats. Further, MCXB-treated rats showed a modulatory effect in the level of dopamine and AchE. However, the glutamate level was significantly (p < 0.001) decreased. CONCLUSION: In addition to that, histopathological examination of the hippocampus part showed remarkable improvement in brain cells. So, the findings of the results revealed that MCXB, in a dose-dependent manner, showed a neuroprotective effect against scopolamine-induced AD. This effect may be attributed to the activation of cholinergic pathways.

11.
Technol Health Care ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39093087

RESUMEN

BACKGROUND: Knee osteoarthritis is a common degenerative joint disease where a single treatment method often fails to fully alleviate symptoms. Hence, finding effective non-invasive combined treatment approaches is particularly crucial. OBJECTIVE: The efficacy of treating knee osteoarthritis with hip abductors exercise training combined with repetitive transcranial magnetic stimulation was assessed through functional scales and objective evaluation methods. METHODS: In this four-week randomized clinical trial, 160 patients meeting inclusion criteria were randomly assigned 1:1 to group A to receive oral celecoxib and group B to receive a combination of hip abductors exercise training and repeated transcranial magnetic stimulation. The primary outcome was the western Ontario and McMaster universities osteoarthritis index. The secondary outcomes include Visual Analogue Scale, knee outcome survey activities of daily living scale, Active Range of Motion, and the Quadriceps Angle, the tibiofemoral angle, peak adductor moment, the integrated electromyography and root mean square of the surface electromyography of the lower extremity muscles. Paired sample t test was used for Within-Group comparison of outcome indicators, and independent sample t test was used for Between-Group comparison. RESULTS: Of the 160 randomly assigned patients, 150 completed the study. After 4 weeks, the WOMAC index decreased from 61 ± 10.83 to 40.55 ± 7.58 in the combined treatment group and from 60.97 ± 10.18 to 47.7 ± 10.13 in the celecoxib group. The effect of the combined treatment group was significantly higher than that in the celecoxib group (P< 0.001). In the combined treatment group, the score of knee joint daily living scale increased (P< 0.001), the active range of motion increased (P< 0.001), the quadriceps angle decreased (P< 0.001), the tibiofemoral angle increased (P< 0.001), and the peak adduction moment decreased (P< 0.001), integrated electromyography and root mean square increased (P< 0.001), and the effect was better than that of celecoxib group (P< 0.001). The visual analog scale score in celecoxib group was lower (P< 0.001) and knee outcome survey activities of daily living scale was higher (P< 0.001). The incidence of treatment-related adverse events was 10% in the celecoxib group and 2.5% in the combined treatment group, all of which were mild. CONCLUSIONS: Hip abductors exercise training combined with repetitive transcranial magnetic stimulation can enhance abduction muscle strength, improve mobility, reduce joint pain, and enhance quality of life. This combined approach shows superior clinical effectiveness compared to oral celecoxib.

12.
Drug Des Devel Ther ; 18: 3315-3327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100220

RESUMEN

Purpose: Oral drug administration is the most common and convenient route, offering good patient compliance but drug solubility limits oral applications. Celecoxib, an insoluble drug, requires continuous high-dose oral administration, which may increase cardiovascular risk. The nanostructured lipid carriers prepared from drugs and lipid excipients can effectively improve drug bioavailability, reduce drug dosage, and lower the risk of adverse reactions. Methods: In this study, we prepared hyaluronic acid-modified celecoxib nanostructured lipid carriers (HA-NLCs) to improve the bioavailability of celecoxib and reduce or prevent adverse drug reactions. Meanwhile, we successfully constructed a set of FDA-compliant biological sample test methods to investigate the pharmacokinetics of HA-NLCs in rats. Results: The pharmacokinetic analysis confirmed that HA-NLCs significantly enhanced drug absorption, resulting in an AUC0-t 1.54 times higher than the reference formulation (Celebrex®). Moreover, compared with unmodified nanostructured lipid carriers (CXB-NLCs), HA-NLCs enhance the retention time and improve the drug's half-life in vivo. Conclusion: HA-NLCs significantly increased the bioavailability of celecoxib. The addition of hyaluronic acid prolonged the drug's in vivo duration of action and reduced the risk of cardiovascular adverse effects associated with the frequent administration of oral celecoxib.


Asunto(s)
Disponibilidad Biológica , Celecoxib , Portadores de Fármacos , Ácido Hialurónico , Lípidos , Nanoestructuras , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Celecoxib/administración & dosificación , Celecoxib/farmacocinética , Celecoxib/química , Ácido Hialurónico/química , Ácido Hialurónico/administración & dosificación , Animales , Ratas , Portadores de Fármacos/química , Lípidos/química , Masculino , Cromatografía Líquida de Alta Presión , Nanoestructuras/química , Administración Oral , Cromatografía Líquida con Espectrometría de Masas
13.
Heliyon ; 10(15): e34936, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39157338

RESUMEN

Objective: To explore the effective targets of Celecoxib in the treatment of heterotopic ossification using network pharmacology methods. Methods: Potential molecules related to heterotopic ossification were obtained by retrieving the GEO and CTD databases and intersecting them. Potential binding targets of Celecoxib were acquired from the STITCH database. A protein-protein interaction network was constructed between potential binding targets of Celecoxib and potential related molecules of heterotopic ossification using the STRING database. Molecules in the protein-protein interaction network were further analyzed using GO and KEGG enrichment analysis in R software, followed by enrichment analysis of active molecules in the Celecoxib-heterotopic ossification target dataset. Hub genes were selected based on the "degree" value and enrichment within the protein-protein interaction network. The binding affinity of hub genes to Celecoxib was observed using molecular docking techniques. Finally, in vitro experiments were conducted to validate the effectiveness of hub genes and explore their regulatory role in the progression of heterotopic ossification. Additionally, the therapeutic effect of Celecoxib, which modulates the expression of the hub genes, was investigated in the treatment of heterotopic ossification. Results: 568 potential molecules related to heterotopic ossification and 76 potential binding targets of Celecoxib were identified. After intersection, 13 potential functional molecules in Celecoxib's treatment of heterotopic ossification were obtained. KEGG analysis suggested pathways such as Rheumatoid arthritis, NF-kappa B signaling pathway, Pathways in cancer, Antifolate resistance, MicroRNAs in cancer play a role in the treatment of heterotopic ossification by Celecoxib. Further enrichment analysis of the 13 potential functional molecules identified 5 hub genes: IL6, CCND1, PTGS2, IGFBP3, CDH1. Molecular docking results indicated that Celecoxib displayed excellent binding affinity with CCND1 among the 5 hub genes. Experimental validation found that CCND1 is highly expressed in the progression of heterotopic ossification, promoting heterotopic ossification in the early stages and inhibiting it in the later stages, with Celecoxib's treatment of heterotopic ossification depending on CCND1. Conclusion: In the process of treating heterotopic ossification with Celecoxib, immune and inflammatory signaling pathways play a significant role. The therapeutic effect of Celecoxib on heterotopic ossification depends on the hub gene CCND1, which plays different roles at different stages of the progression of heterotopic ossification, ultimately inhibiting the occurrence of heterotopic ossification.

14.
Cytokine ; 182: 156733, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128194

RESUMEN

BACKGROUND: Septic cardiomyopathy is a component of multiple organ dysfunction in sepsis. Mitochondrial dysfunction plays an important role in septic cardiomyopathy. Studies have shown that cyclooxygenase-2 (COX-2) had a protective effect on the heart, and prostaglandin E2 (PGE2), the downstream product of COX-2, was increasingly recognized to have a protective effect on mitochondrial function. OBJECTIVE: This study aims to demonstrate that COX-2/PGE2 can protect against septic cardiomyopathy by regulating mitochondrial function. METHODS: Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and RAW264.7 macrophages and H9C2 cells were used to simulate sepsis in vitro. The NS-398 and celecoxib were used to inhibit the activity of COX-2. ZLN005 and SR18292 were used to activate or inhibit the PGC-1α activity. The mitochondrial biogenesis was examined through the Mitotracker Red probe, mtDNA copy number, and ATP content detection. RESULTS: The experimental data suggested that COX-2 inhibition attenuated PGC-1α expression thus decreasing mitochondrial biogenesis, whereas increased PGE2 could promote mitochondrial biogenesis by activating PGC-1α. The results also showed that the effect of COX-2/PGE2 on PGC-1α was mediated by the activation of cyclic adenosine monophosphate (cAMP) response element binding protein (CREB). Finally, the effect of COX-2/PGE2 on the heart was also verified in the septic mice. CONCLUSION: Collectively, these results suggested that COX-2/PGE2 pathway played a cardioprotective role in septic cardiomyopathy through improving mitochondrial biogenesis, which has changed the previous understanding that COX-2/PGE2 only acted as an inflammatory factor.


Asunto(s)
Ciclooxigenasa 2 , Dinoprostona , Biogénesis de Organelos , Sepsis , Animales , Sepsis/metabolismo , Sepsis/tratamiento farmacológico , Ratones , Ciclooxigenasa 2/metabolismo , Células RAW 264.7 , Dinoprostona/metabolismo , Masculino , Ratones Endogámicos C57BL , Cardiotónicos/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Cardiomiopatías/metabolismo , Cardiomiopatías/tratamiento farmacológico , Modelos Animales de Enfermedad , Inhibidores de la Ciclooxigenasa 2/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
15.
Front Pharmacol ; 15: 1407387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135798

RESUMEN

Pituitary neuroendocrine tumor is the third most common primary intracranial tumor. Its main clinical manifestations include abnormal hormone secretion symptoms, symptoms caused by tumor compression of the surrounding pituitary tissue, pituitary stroke, and other anterior pituitary dysfunction. Its pathogenesis is yet to be fully understood. Surgical treatment is still the main treatment. Despite complete resection, 10%-20% of tumors may recur. While dopamine agonists are effective in over 90% of prolactinomas, prolonged use and individual variations can lead to increased drug resistance and a gradual decline in efficacy, which ultimately requires surgical intervention. Nonsteroidal anti-inflammatory drugs reduce the production of inflammatory mediator prostaglandins by inhibiting the activity of cyclooxygenase and exert antipyretic, analgesic, antiplatelet, and anti-inflammatory effects. In recent years, many in-depth studies have confirmed the potential of nonsteroidal anti-inflammatory drugs as a preventive and antitumor agent. It has been extensively utilized in the prevention and treatment of various types of cancer. However, their specific mechanisms of action still need to be fully elucidated. This article summarizes recent research progress on the expression of cyclooxygenase in pituitary neuroendocrine tumors and the treatment of nonsteroidal anti-inflammatory drugs. It provides a feasible theoretical basis for further research on pituitary neuroendocrine tumors and explores potential therapeutic targets.

16.
Inflammopharmacology ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39017993

RESUMEN

The aim of this study was to develop and evaluate bilosomes loaded with Celecoxib (CXB) for the efficient treatment of Alzheimer. The thin-film hydration approach was utilized in the formulation of CXB bilosomes (CXB-BLs). The study used a 23-factorial design to investigate the impact of several formulation variables. Three separate parameters were investigated: bile salt type (X1), medication amount (X2), and lipid-bile salt ratio (X3). The dependent responses included entrapment efficiency (Y1: EE %), particle size (Y2: PS), and zeta potential (Y3: ZP). The formulation factors were statistically optimized using the Design-Expert® program. The vesicles demonstrated remarkable CXB encapsulation efficiency, ranging from 94.16 ± 1.91 to 98.38 ± 0.85%. The vesicle sizes ranged from 241.8 ± 6.74 to 352 ± 2.34 nm. The produced formulations have high negative zeta potential values, indicating strong stability. Transmission electron microscopy (TEM) revealed that the optimized vesicles had a spherical form. CXB release from BLs was biphasic, with the release pattern following Higuchi's model. In vivo studies confirmed the efficiency of CXB-BLs in management of lipopolysaccharide-induced Alzheimer as CXB-BLs ameliorated cognitive dysfunction, decreased acetylcholinesterase (AChE), and inhibited neuro-inflammation and neuro-degeneration through reducing Toll-like receptor (TLR4), and Interleukin-1ß (IL-1ß) levels. The findings suggested that the created CXB-BLs could be a potential drug delivery strategy for Alzheimer's treatment.

17.
Discov Oncol ; 15(1): 321, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083127

RESUMEN

INTRODUCTION: Hepatocellular carcinoma (HCC) is a common and fatal cancer, and its molecular mechanisms are still not fully understood. This study aimed to explore the potential molecular mechanisms and immune infiltration characteristics of celecoxib combined with sorafenib in the treatment of HCC by analyzing the differentially expressed genes (DEGs) from the GSE45340 dataset in the GEO database and identifying key genes. METHODS: The GSE45340 dataset was downloaded from the GEO database, and DEGs were screened using GEO2R, and visualization and statistical analysis were performed. Metascape was used to perform functional annotation and protein-protein interaction network analysis of DEGs. The immune infiltration was analyzed using the TIMER database, and the expression of key genes and their relationship with patient survival were analyzed and verified using the UALCAN database. RESULTS: A total of 2181 DEGs were screened through GEO2R analysis, and heat maps were drawn for the 50 genes with the highest expression. Metascape was used for enrichment analysis, and the enrichment results of KEGG and GO and the PPI network were obtained, and 44 core genes were screened. Analysis of the TIMER database found that 12 genes were closely related to tumor immune infiltration. UALCAN analysis further verified the differential expression of these genes in HCC and was closely related to the overall survival of patients. CONCLUSIONS: Through comprehensive bioinformatics analysis, this study identified a group of key genes related to the treatment of HCC with celecoxib combined with sorafenib. These genes play an important role in tumor immune infiltration and patient survival, providing important clues for further studying the molecular mechanism of HCC and developing potential therapeutic targets.

18.
J Hand Surg Asian Pac Vol ; 29(4): 309-320, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39005176

RESUMEN

Background: In patients with a high recurrence risk after treatment for Dupuytren contracture (DC) by Collagenase Clostridium histolyticum (CCH), adjuvant medical therapy may improve the outcome. Non-steroidal anti-inflammatory drugs have been used in the treatment of similar fibroproliferative processes. The aim of this study was to investigate if adjuvant anti-inflammatory medication could improve the outcome of CCH treatment for DC. Methods: In a prospective double blinded randomised trial, the effect of adjuvant peroral celecoxib on the outcome of DC treated with CCH was investigated in 32 patients with a high fibrosis diathesis. Primary outcome was the increase in Total Passive Extension Deficit (TPED)/ray. Secondary outcomes were the TPED of the individual finger joints, Tubiana index, Disability of Arm, Shoulder and Hand score (DASH) and visual analogue scale (VAS) for pain and satisfaction. Results: A significantly greater improvement in the celecoxib group for TPED and metacarpophalangeal contracture was found. For the proximal interphalangeal joint, the effect was much less pronounced. The VAS for pain and satisfaction were better at 6 and 12 weeks in the celecoxib group. The other outcome parameters did not significantly differ between both groups. Conclusions: Adjuvant peroral administration of celecoxib might improve the gain in TPED after treatment with CCH in patients with DC and a high fibrosis diathesis, with a beneficial effect up to 24 months. Level of Evidence: Level II (Therapeutic).


Asunto(s)
Celecoxib , Contractura de Dupuytren , Colagenasa Microbiana , Sulfonamidas , Humanos , Contractura de Dupuytren/tratamiento farmacológico , Celecoxib/uso terapéutico , Celecoxib/administración & dosificación , Método Doble Ciego , Masculino , Femenino , Persona de Mediana Edad , Colagenasa Microbiana/administración & dosificación , Colagenasa Microbiana/uso terapéutico , Anciano , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Sulfonamidas/farmacología , Estudios Prospectivos , Pirazoles/uso terapéutico , Pirazoles/administración & dosificación , Pirazoles/efectos adversos , Resultado del Tratamiento , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Dimensión del Dolor , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Inyecciones Intralesiones , Quimioterapia Adyuvante/efectos adversos
19.
Artículo en Inglés | MEDLINE | ID: mdl-38990306

RESUMEN

NLRP1 is predominantly overexpressed in breast cancer tissue, and the evaluated activation of NLRP1 inflammasome is associated with tumor growth, angiogenesis, and metastasis. Therefore, targeting NLRP1 activation could be a crucial strategy in anticancer therapy. In this study, we investigated the hypothesis that NLRP1 pathway may contribute to the cytotoxic effects of celecoxib and nimesulide in MDA-MB-231 cells. First of all, IC50 values and inhibitory effects on the colony-forming ability of drugs were evaluated in cells. Then, the alterations in the expression levels of NLRP1 inflammasome components induced by drugs were investigated. Subsequently, the release of inflammatory cytokine IL-1ß and the activity of caspase-1 in drug-treated cells were measured. According to our results, celecoxib and nimesulide selectively inhibited the viability of MDA-MB-231 cells. These drugs remarkably inhibited the colony-forming ability of cells. The expression levels of NLRP1 inflammasome components decreased in celecoxib-treated cells, accompanied by decreased caspase-1 activity and IL-1ß release. In contrast, nimesulide treatment led to the upregulation of the related protein expressions with unchanged caspase-1 activity and increased IL-1ß secretion. Our results indicated that the NLRP1 inflammasome pathway might contribute to the antiproliferative effects of celecoxib in MDA-MB-231 cells but is not a crucial mechanism for nimesulide.

20.
Int J Nanomedicine ; 19: 7253-7271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050880

RESUMEN

Soft tissue injuries often involve muscle and peripheral nerves and are qualitatively distinct from single-tissue injuries. Prior research suggests that damaged innervation compromises wound healing. To test this in a traumatic injury context, we developed a novel mouse model of nerve and lower limb polytrauma, which features greater pain hypersensitivity and more sustained macrophage infiltration than either injury in isolation. We also show that macrophages are crucial mediators of pain hypersensitivity in this model by delivering macrophage-targeted nanoemulsions laden with the cyclooxygenase-2 (COX-2) inhibitor celecoxib. This treatment was more effective in males than females, and more effective when delivered 3 days post-injury than 7 days post-injury. The COX-2 inhibiting nanoemulsion drove widespread anti-inflammatory changes in cytokine expression in polytrauma-affected peripheral nerves. Our data shed new light on the modulation of inflammation by injured nerve input and demonstrate macrophage-targeted nanoimmunomodulation can produce rapid and sustained pain relief following complex injuries.


Asunto(s)
Celecoxib , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Macrófagos , Animales , Macrófagos/efectos de los fármacos , Masculino , Femenino , Celecoxib/farmacología , Celecoxib/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Ratones , Ciclooxigenasa 2/metabolismo , Traumatismo Múltiple/complicaciones , Emulsiones/química , Emulsiones/farmacología , Ratones Endogámicos C57BL , Dolor/tratamiento farmacológico , Modelos Animales de Enfermedad , Citocinas/metabolismo , Inmunomodulación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA