Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.530
Filtrar
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39171985

RESUMEN

The tendency for cell fate to be robust to most perturbations, yet sensitive to certain perturbations raises intriguing questions about the existence of a key path within the underlying molecular network that critically determines distinct cell fates. Reprogramming and trans-differentiation clearly show examples of cell fate change by regulating only a few or even a single molecular switch. However, it is still unknown how to identify such a switch, called a master regulator, and how cell fate is determined by its regulation. Here, we present CAESAR, a computational framework that can systematically identify master regulators and unravel the resulting canalizing kernel, a key substructure of interconnected feedbacks that is critical for cell fate determination. We demonstrate that CAESAR can successfully predict reprogramming factors for de-differentiation into mouse embryonic stem cells and trans-differentiation of hematopoietic stem cells, while unveiling the underlying essential mechanism through the canalizing kernel. CAESAR provides a system-level understanding of how complex molecular networks determine cell fates.


Asunto(s)
Diferenciación Celular , Animales , Ratones , Reprogramación Celular , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Biología Computacional/métodos , Redes Reguladoras de Genes , Linaje de la Célula , Transdiferenciación Celular
2.
Adv Neurobiol ; 39: 51-67, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39190071

RESUMEN

Astrocytes have gained increasing recognition as key elements of a broad array of nervous system functions. These include essential roles in synapse formation and elimination, synaptic modulation, maintenance of the blood-brain barrier, energetic support, and neural repair after injury or disease of the nervous system. Nevertheless, our understanding of mechanisms underlying astrocyte development and maturation remains far behind that of neurons and oligodendrocytes. Early efforts to understand astrocyte development focused primarily on their specification from embryonic progenitors and the molecular mechanisms driving the switch from neuron to glial production. Considerably, less is known about postnatal stages of astrocyte development, the period during which they are predominantly generated and mature. Notably, this period is coincident with synapse formation and the emergence of nascent neural circuits. Thus, a greater understanding of astrocyte development is likely to shed new light on the formation and maturation of synapses and circuits. Here, we highlight key foundational principles of embryonic and postnatal astrocyte development, focusing largely on what is known from rodent studies.


Asunto(s)
Astrocitos , Astrocitos/metabolismo , Animales , Roedores , Neurogénesis/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Diferenciación Celular/fisiología , Neuronas/metabolismo , Encéfalo
3.
Nano Lett ; 24(33): 10396-10401, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39116269

RESUMEN

Cellular redox homeostasis is essential for maintaining cellular activities, such as DNA synthesis and gene expression. Inspired by this, new therapeutic interventions have been rapidly developed to modulate the intracellular redox state using artificial transmembrane electron transport. However, current approaches that rely on external electric field polarization can disrupt cellular functions, limiting their in vivo application. Therefore, it is crucial to develop novel electric-field-free modulation methods. In this work, we for the first time found that graphene could spontaneously insert into living cell membranes and serve as an electron tunnel to regulate intracellular reactive oxygen species and NADH based on the spontaneous bipolar electrochemical reaction mechanism. This work provides a wireless and electric-field-free approach to regulating cellular redox states directly and offers possibilities for biological applications such as cell process intervention and treatment for neurodegenerative diseases.


Asunto(s)
Membrana Celular , Grafito , Oxidación-Reducción , Especies Reactivas de Oxígeno , Grafito/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Transporte de Electrón , Membrana Celular/metabolismo , Membrana Celular/química , NAD/química , NAD/metabolismo , Electrones
4.
Dev Biol ; 516: 96-113, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089472

RESUMEN

The ellipsoid body (EB) of the insect brain performs pivotal functions in controlling navigation. Input and output of the EB is provided by multiple classes of R-neurons (now referred to as ER-neurons) and columnar neurons which interact with each other in a stereotypical and spatially highly ordered manner. The developmental mechanisms that control the connectivity and topography of EB neurons are largely unknown. One indispensable prerequisite to unravel these mechanisms is to document in detail the sequence of events that shape EB neurons during their development. In this study, we analyzed the development of the Drosophila EB. In addition to globally following the ER-neuron and columnar neuron (sub)classes in the spatial context of their changing environment we performed a single cell analysis using the multi-color flip out (MCFO) system to analyze the developmental trajectory of ER-neurons at different pupal stages, young adults (4d) and aged adults (∼60d). We show that the EB develops as a merger of two distinct elements, a posterior and anterior EB primordium (prEBp and prEBa, respectively. ER-neurons belonging to different subclasses form growth cones and filopodia that associate with the prEBp and prEBa in a pattern that, from early pupal stages onward, foreshadows their mature structure. Filopodia of all ER-subclasses are initially much longer than the dendritic and terminal axonal branches they give rise to, and are pruned back during late pupal stages. Interestingly, extraneous branches, particularly significant in the dendritic domain, are a hallmark of ER-neuron structure in aged brains. Aging is also associated with a decline in synaptic connectivity from columnar neurons, as well as upregulation of presynaptic protein (Brp) in ER-neurons. Our findings advance the EB (and ER-neurons) as a favorable system to visualize and quantify the development and age-related decline of a complex neuronal circuitry.

5.
Mol Cell ; 84(16): 3061-3079.e10, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39121853

RESUMEN

Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.


Asunto(s)
Microscopía por Crioelectrón , Factor de Transcripción GATA4 , Factor Nuclear 3-alfa del Hepatocito , Nucleosomas , Unión Proteica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Nucleosomas/ultraestructura , Animales , Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/química , Ratones , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Histonas/química , Sitios de Unión , ADN/metabolismo , ADN/genética , ADN/química , Ensamble y Desensamble de Cromatina , Humanos
6.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39149260

RESUMEN

The extracellular matrix (ECM) provides critical biochemical and structural cues that regulate neural development. Chondroitin sulfate proteoglycans (CSPGs), a major ECM component, have been implicated in modulating oligodendrocyte precursor cell (OPC) proliferation, migration, and maturation, but their specific roles in oligodendrocyte lineage cell (OLC) development and myelination in vivo remain poorly understood. Here, we use zebrafish as a model system to investigate the spatiotemporal dynamics of ECM deposition and CSPG localization during central nervous system (CNS) development, with a focus on their relationship to OLCs. We demonstrate that ECM components, including CSPGs, are dynamically expressed in distinct spatiotemporal patterns coinciding with OLC development and myelination. We found that zebrafish lacking cspg4 function produced normal numbers of OLCs, which appeared to undergo proper differentiation. However, OPC morphology in mutant larvae was aberrant. Nevertheless, the number and length of myelin sheaths produced by mature oligodendrocytes were unaffected. These data indicate that Cspg4 regulates OPC morphogenesis in vivo, supporting the role of the ECM in neural development.

7.
Front Endocrinol (Lausanne) ; 15: 1423027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170743

RESUMEN

Hypertension affects one-third of the adult population worldwide, with primary aldosteronism (PA) accounting for at least 5-10% of these cases. The aldosterone synthase enzyme (CYP11B2) plays a pivotal role in PA manifestation, as increased expression of CYP11B2 leads to excess aldosterone synthesis. Physiological expression of CYP11B2 in humans is normally limited to cells of the adrenal zona glomerulosa under tight homeostatic regulation. In PA, however, there are CYP11B2-positive lesions in the adrenal cortex that autonomously secrete aldosterone, highlighting the dysregulation of adrenal cortex zonation and function as a key aspect of PA pathogenesis. Thus, this review aims to summarize the development of the adrenal glands, the key regulators of adrenal cortex homeostasis, and the dysregulation of this homeostasis. It also discusses the development of CYP11B2 inhibitors for therapeutic use in patients with hypertension, as well as the current knowledge of the effects of CYP11B2 inhibition on adrenal cortex homeostasis and cell fate. Understanding the control of adrenal cell fate may offer valuable insights into both the pathogenesis of PA and the development of alternative treatment approaches for PA.


Asunto(s)
Glándulas Suprarrenales , Aldosterona , Citocromo P-450 CYP11B2 , Hiperaldosteronismo , Humanos , Aldosterona/metabolismo , Aldosterona/biosíntesis , Citocromo P-450 CYP11B2/metabolismo , Hiperaldosteronismo/metabolismo , Hiperaldosteronismo/patología , Glándulas Suprarrenales/metabolismo , Animales , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/citología , Hipertensión/metabolismo , Hipertensión/patología , Zona Glomerular/metabolismo , Diferenciación Celular , Homeostasis
8.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106861

RESUMEN

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Asunto(s)
Diferenciación Celular , Mitocondrias , Células Madre Embrionarias de Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Vía de Señalización Wnt , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Histonas/metabolismo , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo
9.
bioRxiv ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39149333

RESUMEN

Background: An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results: We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions: Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.

10.
J Biol Chem ; : 107697, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173950

RESUMEN

To elucidate the dynamic evolution of cancer cell characteristics within the tumor microenvironment (TME), we developed an integrative approach combining single-cell tracking, cell fate simulation, and three-dimensional (3D) TME modeling. We began our investigation by analyzing the spatiotemporal behavior of individual cancer cells in cultured pancreatic (MiaPaCa2) and cervical (HeLa) cancer cell lines, with a focus on the α2-6 sialic acid (α2-6Sia) modification on glycans, which is associated with cell stemness. Our findings revealed that MiaPaCa2 cells exhibited significantly higher levels of α2-6Sia modification, correlating with enhanced reproductive capabilities, whereas HeLa cells showed less prevalence of this modification. To accommodate the in vivo variability of α2-6Sia levels, we employed a cell fate simulation algorithm that digitally generates cell populations based on our observed data while varying the level of sialylation, thereby simulating cell growth patterns. Subsequently, we performed a 3D TME simulation with these deduced cell populations, considering the microenvironment that could impact cancer cell growth. Immune cell landscape information derived from 193 cervical and 172 pancreatic cancer cases was used to estimate the degree of the positive or negative impact. Our analysis suggests that the deduced cells generated based on the characteristics of MiaPaCa2 cells are less influenced by the immune cell landscape within the TME compared to those of HeLa cells, highlighting that the fate of cancer cells is shaped by both the surrounding immune landscape and the intrinsic characteristics of the cancer cells.

11.
Proc Natl Acad Sci U S A ; 121(32): e2406842121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39093947

RESUMEN

Exploring the complexity of the epithelial-to-mesenchymal transition (EMT) unveils a diversity of potential cell fates; however, the exact timing and mechanisms by which early cell states diverge into distinct EMT trajectories remain unclear. Studying these EMT trajectories through single-cell RNA sequencing is challenging due to the necessity of sacrificing cells for each measurement. In this study, we employed optimal-transport analysis to reconstruct the past trajectories of different cell fates during TGF-beta-induced EMT in the MCF10A cell line. Our analysis revealed three distinct trajectories leading to low EMT, partial EMT, and high EMT states. Cells along the partial EMT trajectory showed substantial variations in the EMT signature and exhibited pronounced stemness. Throughout this EMT trajectory, we observed a consistent downregulation of the EED and EZH2 genes. This finding was validated by recent inhibitor screens of EMT regulators and CRISPR screen studies. Moreover, we applied our analysis of early-phase differential gene expression to gene sets associated with stemness and proliferation, pinpointing ITGB4, LAMA3, and LAMB3 as genes differentially expressed in the initial stages of the partial versus high EMT trajectories. We also found that CENPF, CKS1B, and MKI67 showed significant upregulation in the high EMT trajectory. While the first group of genes aligns with findings from previous studies, our work uniquely pinpoints the precise timing of these upregulations. Finally, the identification of the latter group of genes sheds light on potential cell cycle targets for modulating EMT trajectories.


Asunto(s)
Transición Epitelial-Mesenquimal , Análisis de la Célula Individual , Transición Epitelial-Mesenquimal/genética , Humanos , Análisis de la Célula Individual/métodos , Linaje de la Célula/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética
12.
Int J Biol Sci ; 20(9): 3557-3569, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993575

RESUMEN

To investigate the cell linkage between tooth dentin and bones, we studied TGF-ß roles during postnatal dentin development using TGF-ß receptor 2 (Tgfßr2) cKO models and cell lineage tracing approaches. Micro-CT showed that the early Tgfßr2 cKO exhibit short roots and thin root dentin (n = 4; p<0.01), a switch from multilayer pre-odontoblasts/odontoblasts to a single-layer of bone-like cells with a significant loss of ~85% of dentinal tubules (n = 4; p<0.01), and a matrix shift from dentin to bone. Mechanistic studies revealed a statistically significant decrease in odontogenic markers, and a sharp increase in bone markers. The late Tgfßr2 cKO teeth displayed losses of odontoblast polarity, a significant reduction in crown dentin volume, and the onset of massive bone-like structures in the crown pulp with high expression levels of bone markers and low levels of dentin markers. We thus concluded that bones and tooth dentin are in the same evolutionary linkage in which TGF-ß signaling defines the odontogenic fate of dental mesenchymal cells and odontoblasts. This finding also raises the possibility of switching the pulp odontogenic to the osteogenic feature of pulp cells via a local manipulation of gene programs in future treatment of tooth fractures.


Asunto(s)
Dentina , Odontoblastos , Receptores de Factores de Crecimiento Transformadores beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Dentina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Odontoblastos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Ratones , Diente/metabolismo , Huesos/metabolismo , Microtomografía por Rayos X , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Noqueados
13.
Cells ; 13(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38994985

RESUMEN

The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.


Asunto(s)
Drosophila melanogaster , Receptores Notch , Animales , Drosophila melanogaster/metabolismo , Receptores Notch/metabolismo , Epitelio/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Órganos de los Sentidos/metabolismo , Órganos de los Sentidos/citología , Transducción de Señal , Células Epiteliales/metabolismo , Células Epiteliales/citología
14.
Development ; 151(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39045847

RESUMEN

One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.


Asunto(s)
Regeneración , Regeneración/fisiología , Regeneración/genética , Animales , Humanos , Morfogénesis
15.
Bioact Mater ; 36: 508-523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39072285

RESUMEN

Obesity-induced chronic inflammation exacerbates multiple types of tissue/organ deterioration and stem cell dysfunction; however, the effects on skeletal tissue and the underlying mechanisms are still unclear. Here, we show that obesity triggers changes in the microRNA profile of macrophage-secreted extracellular vesicles, leading to a switch in skeletal stem/progenitor cell (SSPC) differentiation between osteoblasts and adipocytes and bone deterioration. Bone marrow macrophage (BMM)-secreted extracellular vesicles (BMM-EVs) from obese mice induced bone deterioration (decreased bone volume, bone microstructural deterioration, and increased adipocyte numbers) when administered to lean mice. Conversely, BMM-EVs from lean mice rejuvenated bone deterioration in obese recipients. We further screened the differentially expressed microRNAs in obese BMM-EVs and found that among the candidates, miR-140 (with the function of promoting adipogenesis) and miR-378a (with the function of enhancing osteogenesis) coordinately determine SSPC fate of osteogenic and adipogenic differentiation by targeting the Pparα-Abca1 axis. BMM miR-140 conditional knockout mice showed resistance to obesity-induced bone deterioration, while miR-140 overexpression in SSPCs led to low bone mass and marrow adiposity in lean mice. BMM miR-378a conditional depletion in mice led to obesity-like bone deterioration. More importantly, we used an SSPC-specific targeting aptamer to precisely deliver miR-378a-3p-overloaded BMM-EVs to SSPCs via an aptamer-engineered extracellular vesicle delivery system, and this approach rescued bone deterioration in obese mice. Thus, our study reveals the critical role of BMMs in mediating obesity-induced bone deterioration by transporting selective extracellular-vesicle microRNAs into SSPCs and controlling SSPC fate.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39078237

RESUMEN

The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explored the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discussed the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis, and their involvement in the pathogenesis of co-occurrence of COPD and lung cancer.

17.
Curr Issues Mol Biol ; 46(7): 7097-7113, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39057064

RESUMEN

microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.g., during medical uses, induces various pathological conditions, including oxidative stress. miRNAs may regulate the expression of transcription factors (e.g., nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), tumor suppressor protein p53) and other redox-sensitive genes (e.g., mitogen-activated protein kinase (MAPKs), sirtuins (SIRTs)), which trigger and modulate cellular redox signaling. During irradiation, miRNAs mainly act with reactive oxygen species (ROS) to regulate the cell fate. Depending on the pathway involved and the extent of oxidative stress, this may lead to cell survival or cell death. In the context of radiation-induced oxidative stress, miRNA-21 and miRNA-34a are among the best-studied miRNAs. miRNA-21 has been shown to directly target superoxide dismutase (SOD), or NF-κB, whereas miRNA-34a is a direct regulator of NADPH oxidase (NOX), SIRT1, or p53. Understanding the mechanisms underlying radiation-induced injury including the involvement of redox-responsive miRNAs may help to develop novel approaches for modulating the cellular response to radiation exposure.

18.
New Phytol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061105

RESUMEN

Abscission is the shedding of plant organs in response to developmental and environmental cues. Abscission involves cell separation between two neighboring cell types, residuum cells (RECs) and secession cells (SECs) in the floral abscission zone (AZ) in Arabidopsis thaliana. However, the regulatory mechanisms behind the spatial determination that governs cell separation are largely unknown. The class I KNOTTED-like homeobox (KNOX) transcription factor BREVIPEDICELLUS (BP) negatively regulates AZ cell size and number in Arabidopsis. To identify new players participating in abscission, we performed a genetic screen by activation tagging a weak complementation line of bp-3. We identified the mutant ebp1 (enhancer of BP1) displaying delayed floral organ abscission. The ebp1 mutant showed a concaved surface in SECs and abnormally stacked cells on the top of RECs, in contrast to the precisely separated surface in the wild-type. Molecular and histological analyses revealed that the transcriptional programming during cell differentiation in the AZ is compromised in ebp1. The SECs of ebp1 have acquired REC-like properties, including cuticle formation and superoxide production. We show that SEPARATION AFFECTING RNA-BINDING PROTEIN1 (SARP1) is upregulated in ebp1 and plays a role in the establishment of the cell separation layer during floral organ abscission in Arabidopsis.

19.
Biomaterials ; 311: 122684, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38971120

RESUMEN

Intricate microenvironment signals orchestrate to affect cell behavior and fate during tissue morphogenesis. However, the underlying mechanisms on how specific local niche signals influence cell behavior and fate are not fully understood, owing to the lack of in vitro platform able to precisely, quantitatively, spatially, and independently manipulate individual niche signals. Here, microarrays of protein-based 3D single cell micro-niche (3D-SCµN), with precisely engineered biophysical and biochemical niche signals, are micro-printed by a multiphoton microfabrication and micropatterning technology. Mouse embryonic stem cell (mESC) is used as the model cell to study how local niche signals affect stem cell behavior and fate. By precisely engineering the internal microstructures of the 3D SCµNs, we demonstrate that the cell division direction can be controlled by the biophysical niche signals, in a cell shape-independent manner. After confining the cell division direction to a dominating axis, single mESCs are exposed to asymmetric biochemical niche signals, specifically, cell-cell adhesion molecule on one side and extracellular matrix on the other side. We demonstrate that, symmetry-breaking (asymmetric) niche signals successfully trigger cell polarity formation and bias the orientation of asymmetric cell division, the mitosis process resulting in two daughter cells with differential fates, in mESCs.


Asunto(s)
Impresión Tridimensional , Nicho de Células Madre , Animales , Ratones , Nicho de Células Madre/fisiología , División Celular Asimétrica , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Matriz Extracelular/metabolismo
20.
Natl Sci Rev ; 11(6): nwae142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966071

RESUMEN

Decidual natural killer (dNK) cells are the most abundant immune cells at the maternal-fetal interface during early pregnancy in both mice and humans, and emerging single-cell transcriptomic studies have uncovered various human dNK subsets that are disrupted in patients experiencing recurrent early pregnancy loss (RPL) at early gestational stage, suggesting a connection between abnormal proportions or characteristics of dNK subsets and RPL pathogenesis. However, the functional mechanisms underlying this association remain unclear. Here, we established a mouse model by adoptively transferring human dNK cells into pregnant NOG (NOD/Shi-scid/IL-2Rγnull) mice, where human dNK cells predominantly homed into the uteri of recipients. Using this model, we observed a strong correlation between the properties of human dNK cells and pregnancy outcome. The transfer of dNK cells from RPL patients (dNK-RPL) remarkably worsened early pregnancy loss and impaired placental trophoblast cell differentiation in the recipients. These adverse effects were effectively reversed by transferring CD56+CD39+ dNK cells. Mechanistic studies revealed that CD56+CD39+ dNK subset facilitates early differentiation of mouse trophoblast stem cells (mTSCs) towards both invasive and syncytial pathways through secreting macrophage colony-stimulating factor (M-CSF). Administration of recombinant M-CSF to NOG mice transferred with dNK-RPL efficiently rescued the exacerbated pregnancy outcomes and fetal/placental development. Collectively, this study established a novel humanized mouse model featuring functional human dNK cells homing into the uteri of recipients and uncovered the pivotal role of M-CSF in fetal-supporting function of CD56+CD39+ dNK cells during early pregnancy, highlighting that M-CSF may be a previously unappreciated therapeutic target for intervening RPL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA