Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Biotechnol ; 396: 10-17, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39396643

RESUMEN

The biotransformation of phytosterol into high value steroid intermediates such as 9α-hydroxyandrost-4-ene-3,17-dione (9-OHAD) in Mycolicibacterium is the cornerstone of the steroid pharmaceuticals. However, the limited permeability of the dense mycobacterial cell wall severely hinders the efficient transportation of phytosterol and their bioconversion to 9-OHAD. In this study, we disrupted the genetic pathways involved in trehalose biosynthesis, trehalose recycle and by-product formation, leading to alterations in cell wall formation, cell permeability and 9-OHAD productivity. This manipulation led to an increase of 63.7% in the yield of 9-OHAD, reaching 10.8 g/L at a phytosterol concentration of 20 g/L in shake flask. The enhancement of cell permeability and 9-OHAD production were achieved through the deletion of genes TreS, TreY, OtsA, LpqY, and SugC, as well as the inactivation of regulator PadR. Notably, it was found that the increase in TMM content of cell wall components via TLC analysis directly affected the distribution of 9-OHAD within and outside the cell, ultimately leading to an increase in extracellular production of 9-OHAD from 12% to 32.1%. Therefore, this study provides with an effective strategy for enhancing 9-OHAD production by increasing cell permeability while minimizing by-product 4-AD formation.

2.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3025-3038, 2024 Sep 25.
Artículo en Chino | MEDLINE | ID: mdl-39319722

RESUMEN

Guanidinoacetic acid, as an energetic substance, has a wide range of applications in the food, pharmaceutical, and feed industries. However, the biosynthesis of guanidinoacetic acid has not been applied in industrial production. In this study, we designed the synthetic route of guanidinoacetic acid in a food-grade strain of Bacillus subtilis. By regulating the expression of key enzymes, lifting feedback inhibition, and increasing membrane permeability, we achieved the efficient synthesis of guanidinoacetic acid by whole-cell catalysis. Firstly, the optimal L-arginine:glycine amidinotransferase was screened based on the phylogenetic tree, and the expression of the key enzyme was enhanced by a strategy combining strong promoter and genome integration. Secondly, the ornithine cycle for L-arginine synthesis in Corynebacterium glutamicum was introduced to alleviate the feedback inhibition of the enzyme by the byproduct L-ornithine, and the L-arginine degradation pathway was knocked down to enhance substrate regeneration. Thirdly, the expression of N-acetylmuramoyl-L-alanine amidase (LytC) was up-regulated to increase the cell membrane permeability. Finally, after optimization of whole-cell production conditions, strain Bs-13 achieved guanidinoacetic acid production at a titer of 13.1 g/L after 24 h, with a proudction rate of 0.54 g/(L·h) and a glycine conversion rate of 92.7%. The above strategy improved the production of guanidinoacetic acid and provided a reference for the biosynthesis of guanidinoacetic acid.


Asunto(s)
Arginina , Bacillus subtilis , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Arginina/biosíntesis , Arginina/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/biosíntesis , Amidinotransferasas/genética , Amidinotransferasas/metabolismo , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Ingeniería Metabólica , Ornitina/biosíntesis , Ornitina/metabolismo
3.
Angew Chem Int Ed Engl ; : e202413911, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319385

RESUMEN

Therapeutic intervention targeting mRNA typically aims at reducing the levels of disease-causing sequences. Achieving the opposite effect of blocking the destruction of beneficial mRNA remains underexplored. The degradation of mRNA starts with the removal of poly(A) tails reducing their stability and translational activity which is mainly regulated by the CCR4-NOT complex. The subunit NOT9 binds various RNA binding proteins which recruit mRNA in a sequence-specific manner to the CCR4-NOT complex to promote their deadenylation. These RNA binding proteins interact with NOT9 through a helical NOT9 binding motif which we used as a starting point for development of the hydrocarbon stapled peptide NIP-2. The peptide (KD = 60.4 nM) was able to inhibit RNA-binding (IC50 = 333 nM) as well as the deadenylation activity of the CCR4-NOT complex in vitro while being cell-permeable (EC50 = 2.44 µM). A co-crystal structure of NIP-2 bound to NOT9 allowed further optimization of the peptide through point mutation leading to NIP-2-H27A-N3(KD = 122 nM) with high cell permeability (cell-permeability EC50 = 0.34 µM). The optimized peptide was able to inhibit deadenylation of target mRNAs when used in HeLa cells at a concentration of 100 µM demonstrating the feasibility of increasing mRNA stability.

4.
Angew Chem Int Ed Engl ; 63(44): e202409012, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39115450

RESUMEN

Despite the great advances in discovering cyclic peptides against protein targets, their reduced aqueous solubility, cell permeability, and activity of the cyclic peptide restrict its utilization in advanced biological research and therapeutic applications. Here we report on a novel approach of structural alternation of the exocyclic and linker parts that led to a new derivative with significantly improved cell activity allowing us to dissect its mode of action in detail. We have identified an effective cyclic peptide (CP7) that induces approximately a 9-fold increase in DNA damage accumulation and a remarkable increase in apoptotic cancer cell death compared to the reported molecule. Notably, treating cells with CP7 leads to a dramatic decrease in the efficiency of non-homologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs), which is accompanied by an increase in homologous recombination (HR) repair. Interestingly, treating BRCA1-deficient cells with CP7 restores HR integrity, which is accompanied by increased resistance to CP7. Additionally, CP7 treatment increases the sensitivity of cancer cells to ionizing radiation. Collectively, our findings demonstrate that CP7 is a selective inhibitor of NHEJ, offering a potential strategy to enhance the effectiveness of radiation therapy.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Humanos , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Lisina/química , Lisina/metabolismo , Ubiquitina/metabolismo , Ubiquitina/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Línea Celular Tumoral
5.
Mol Pharm ; 21(8): 4116-4127, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39031123

RESUMEN

Peptide-based therapeutics hold immense promise for the treatment of various diseases. However, their effectiveness is often hampered by poor cell membrane permeability, hindering targeted intracellular delivery and oral drug development. This study addressed this challenge by introducing a novel graph neural network (GNN) framework and advanced machine learning algorithms to build predictive models for peptide permeability. Our models offer systematic evaluation across diverse peptides (natural, modified, linear and cyclic) and cell lines [Caco-2, Ralph Russ canine kidney (RRCK) and parallel artificial membrane permeability assay (PAMPA)]. The predictive models for linear and cyclic peptides in Caco-2 and RRCK cell lines were constructed for the first time, with an impressive coefficient of determination (R2) of 0.708, 0.484, 0.553, and 0.528 in the test set, respectively. Notably, the GNN framework behaved better in permeability prediction with larger data sets and improved the accuracy of cyclic peptide prediction in the PAMPA cell line. The R2 increased by about 0.32 compared with the reported models. Furthermore, the important molecular structural features that contribute to good permeability were interpreted; the influence of cell lines, peptide modification, and cyclization on permeability were successfully revealed. To facilitate broader use, we deployed these models on the user-friendly KNIME platform (https://github.com/ifyoungnet/PharmPapp). This work provides a rapid and reliable strategy for systematically assessing peptide permeability, aiding researchers in drug delivery optimization, peptide preselection during drug discovery, and potentially the design of targeted peptide-based materials.


Asunto(s)
Permeabilidad de la Membrana Celular , Células CACO-2 , Perros , Humanos , Animales , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/química , Aprendizaje Automático , Redes Neurales de la Computación , Péptidos/química , Péptidos/metabolismo , Permeabilidad , Línea Celular , Membranas Artificiales , Algoritmos
6.
Talanta ; 279: 126583, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39053364

RESUMEN

The plasma membrane involves in many important biological events such as cell fusion and programmed cell death, but most of current plasma membrane probes cannot meet the requirement of long-term specific anchoring to the plasma membrane. Herein, we propose a molecular side-chain engineering strategy to modulate the long-term imaging performance of fluorescent dyes to the plasma membrane by regulating the cell permeability and anchoring ability. A series of FMR dyes with different lengths of side chains were designed and synthesized, and their transmembrane behaviours and staining performance were evaluated in living HeLa cells. We found that short-chain and medium-chain FMR dyes have excellent cell permeability without the labeling ability to the plasma membrane while the long-chain FMR dyes specifically stain the plasma membrane and can be firmly anchored to the plasma membrane for a long period of time. These long-chain FMR dyes have high stain specificality to the plasma membrane, and C10-FMR can be anchored to the plasma membrane of living cells for 2 h, which enables it to continuously monitor dynamic changes of the plasma membrane. The three-dimensional precision imaging of various cells was achieved using C10-FMR, which provides an opportunity to obtain complete information on the three-dimensional spatial morphology of the plasma membrane. The PEG-induced cell fusion of chicken red blood cells and H2O2-induced apoptosis of HeLa cells were monitored by real-time tracking of dynamic changes of the plasma membrane during these processes, which provide solid examples to prove the usefulness of these fluorescent dyes as long-term imaging tools. This work validates the hypothesis that cell permeability of membrane dyes can be readily regulated by tuning the side chains, and provides the effective design strategy of fluorescent dyes for 3D and long-term dynamic tracking of the plasma membrane of diverse animal cells.


Asunto(s)
Membrana Celular , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Membrana Celular/metabolismo , Membrana Celular/química , Células HeLa , Animales , Pollos , Permeabilidad de la Membrana Celular , Peróxido de Hidrógeno/química
7.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063228

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) presents a significant global health challenge, characterized by the accumulation of liver fat and impacting a considerable portion of the worldwide population. Despite its widespread occurrence, effective treatments for MAFLD are limited. The liver-specific isoform of pyruvate kinase (PKL) has been identified as a promising target for developing MAFLD therapies. Urolithin C, an allosteric inhibitor of PKL, has shown potential in preliminary studies. Expanding upon this groundwork, our study delved into delineating the structure-activity relationship of urolithin C via the synthesis of sulfone-based urolithin analogs. Our results highlight that incorporating a sulfone moiety leads to substantial PKL inhibition, with additional catechol moieties further enhancing this effect. Despite modest improvements in liver cell lines, there was a significant increase in inhibition observed in HepG2 cell lysates. Specifically, compounds 15d, 9d, 15e, 18a, 12d, and 15a displayed promising IC50 values ranging from 4.3 µM to 18.7 µM. Notably, compound 15e not only demonstrated a decrease in PKL activity and triacylglycerol (TAG) content but also showed efficient cellular uptake. These findings position compound 15e as a promising candidate for pharmacological MAFLD treatment, warranting further research and studies.


Asunto(s)
Hígado , Piruvato Quinasa , Sulfonas , Humanos , Piruvato Quinasa/antagonistas & inhibidores , Piruvato Quinasa/metabolismo , Sulfonas/química , Sulfonas/farmacología , Sulfonas/síntesis química , Células Hep G2 , Hígado/metabolismo , Relación Estructura-Actividad , Regulación Alostérica/efectos de los fármacos , Diseño de Fármacos , Cumarinas/química , Cumarinas/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
8.
Artículo en Inglés | MEDLINE | ID: mdl-38898802

RESUMEN

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

9.
Angew Chem Int Ed Engl ; 63(26): e202400350, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38602024

RESUMEN

Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.


Asunto(s)
Compuestos Macrocíclicos , Compuestos Macrocíclicos/química , Compuestos Macrocíclicos/síntesis química , Humanos , Permeabilidad de la Membrana Celular , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/metabolismo , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/metabolismo , Trombina/metabolismo , Trombina/antagonistas & inhibidores , Trombina/química , Cristalografía por Rayos X , Compuestos de Sulfhidrilo/química , Modelos Moleculares
10.
Talanta ; 275: 126105, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640520

RESUMEN

Long-term visualization of changes in plasma membrane dynamics during important physiological processes can provide intuitive and reliable information in a 4D mode. However, molecular tools that can visualize plasma membranes over extended periods are lacking due to the absence of effective design rules that can specifically track plasma membrane fluorescent dye molecules over time. Using plant plasma membranes as a model, we systematically investigated the effects of different alkyl chain lengths of FMR dye molecules on their performance in imaging plasma membranes. Our findings indicate that alkyl chain length can effectively regulate the permeability of dye molecules across plasma membranes. The study confirms that introducing medium-length alkyl chains improves the ability of dye molecules to target and anchor to plasma membranes, allowing for long-term imaging of plasma membranes. This provides useful design rules for creating dye molecules that enable long-term visualization of plasma membranes. Using the amphiphilic amino-styryl-pyridine fluorescent skeleton, we discovered that the inclusion of short alkyl chains facilitated rapid crossing of the plasma membrane by the dye molecules, resulting in staining of the cell nucleus and indicating improved cell permeability. Conversely, the inclusion of long alkyl chains hindered the crossing of the cell wall by the dye molecules, preventing staining of the cell membrane and demonstrating membrane impermeability to plant cells. The FMR dyes with medium-length alkyl chains rapidly crossed the cell wall, uniformly stained the cell membrane, and anchored to it for a long period without being transmembrane. This allowed for visualization and tracking of the morphological dynamics of the cell plasma membrane during water loss in a 4D mode. This suggests that the introduction of medium-length alkyl chains into amphiphilic fluorescent dyes can transform them from membrane-permeable fluorescent dyes to membrane-staining fluorescent dyes suitable for long-term imaging of the plasma membrane. In addition, we have successfully converted a membrane-impermeable fluorescent dye molecule into a membrane-staining fluorescent dye by introducing medium-length alkyl chains into the molecule. This molecular engineering of dye molecules with alkyl chains to regulate cell permeability provides a simple and effective design rule for long-term visualization of the plasma membrane, and a convenient and feasible means of chemical modification for efficient transmembrane transport of small molecule drugs.


Asunto(s)
Permeabilidad de la Membrana Celular , Membrana Celular , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Membrana Celular/metabolismo , Membrana Celular/química , Arabidopsis/química , Arabidopsis/metabolismo
11.
Biotechnol J ; 19(3): e2300642, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38472088

RESUMEN

The biosynthesis of cadaverine from lysine is an environmentally promising technology, that could contribute to a more sustainable approach to manufacturing bio-nylon 5X. However, the titer of biosynthesized cadaverine has still not reached a sufficient level for industrial production. A powerful green cell factory was developed to enhance cadaverine production by regulating lipopolysaccharide (LPS) genes and improving membrane permeability. Firstly, 10 LPS mutant strains were constructed and the effect on the growth was investigated. Then, the lysine decarboxylase (CadA) was overexpressed in 10 LPS mutant strains of Escherichia coli MG1655 and the ability to produce cadaverine was compared. Using 20.0 g L-1 of L-lysine hydrochloride (L-lysine-HCl) as the substrate for the biotransformation reaction, Cad02 and Cad06 strains exhibited high production levels of cadaverine, with 8.95 g L-1 and 7.55 g L-1 respectively while the control strain Cad00 only 4.92 g L-1 . Directed evolution of CadA was also used to improve its stability under alkaline conditions. The cadaverine production of the Cad02-M mutant stain increased by 1.86 times at pH 8.0. Finally, the production process was scaled up using recombinant whole cells as catalysts, achieving a high titer of 211 g L-1 cadaverine (96.8%) by fed-batch bioconversion. This study demonstrates the potential role of LPS in enhancing the efficiency of mass transfer between substrate and enzymes in vivo by increasing cell permeability. The results indicate that the argumentation of cell permeability could not only significantly enhance the biotransformation efficiency of cadaverine, but also provide a universally applicable, straightforward, environment-friendly, and cost-effective method for the biosynthesis of other high-value chemicals.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Escherichia coli/genética , Cadaverina/metabolismo , Lipopolisacáridos/metabolismo , Catálisis , Biotransformación , Lisina/metabolismo
12.
Appl Microbiol Biotechnol ; 108(1): 188, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300351

RESUMEN

Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Daño del ADN , Mitomicina , Luciferasas , ADN
13.
Mater Today Bio ; 25: 100983, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38327977

RESUMEN

The use of the FDA-approved osteoinductive growth factor BMP2 is widespread for bone regeneration. However, its clinical application has been hindered by limitations in cell permeability and a short half-life in circulation. To address this issue, we have developed a modified version of BMP2, referred to as Cell Permeable (CP)-BMP2, which possesses improved cell permeability. CP-BMP2 incorporates an advanced macromolecular transduction domain (aMTD) to facilitate transfer across the plasma membrane, a solubilization domain, and recombinant human BMP2. Compared to traditional rhBMP2, CP-BMP2 exhibits enhanced cell permeability, solubility, and bioavailability, and activates Smad phosphorylation through binding to BMP receptor 2. The effectiveness of CP-BMP2 was evaluated in three animal studies focusing on bone regeneration. In the initial study, mice and rabbits with critical-size calvarial defects received subcutaneous (SC) injections of CP-BMP2 and rhBMP2 (7.5 mg/kg, 3 injections per week for 8 weeks).Following 8 weeks of administration, CP-BMP2 demonstrated a remarkable 65 % increase in bone formation in mice when compared to both the vehicle and rhBMP2. Moreover, rabbits exhibited faster bone formation, characterized by a filling pattern originating from the center. In a subsequent study involving injured horses, hind limb bones treated with CP-BMP2 exhibited an 85 % higher bone regeneration rate, as evidenced by Micro-CT results, in contrast to horses treated with the vehicle or rhBMP2 (administered at 150 µg/defect, subcutaneously, once a week for 8 weeks, without a scaffold). These results underscore the potential of CP-BMP2 to facilitate rapid and effective healing. No noticeable adverse effects, such as ectopic bone formation, were observed in any of the studies. Overall, our findings demonstrate that CP-BMP2 holds therapeutic potential as a novel and effective osteogenic agent.

14.
Int J Pharm ; 652: 123793, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38195033

RESUMEN

Pharmaceutical cocrystallization has been widely used to improve physicochemical properties of APIs. However, developing cocrystal formulation with proven clinical success remains scarce. Successful translation of a cocrystal to suitable dosage forms requires simultaneously improvement of several deficient physicochemical properties over the parent API, without deteriorating other properties critical for successful product development. In the present work, we report the successful development of a direct compression tablet product of acetazolamide (ACZ), using a 1:1 cocrystal of acetazolamide with p-aminobenzoic acid (ACZ-PABA). The ACZ-PABA tablet exhibits superior biopharmaceutical performance against the commercial tablet, DIAMOX® (250 mg), in healthy human volunteers, leading to more than 50 % reduction in the required dose.


Asunto(s)
Ácido 4-Aminobenzoico , Acetazolamida , Humanos , Acetazolamida/química , Ácido 4-Aminobenzoico/química , Cristalización , Disponibilidad Biológica , Voluntarios Sanos , Solubilidad , Comprimidos/química
15.
J Pept Sci ; 30(5): e3562, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38148630

RESUMEN

The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself. Using a range of chemistries including Pd-catalysed cross-coupling, cysteine arylation and cysteine alkylation, we successfully improved the helicity and observed modest peptide binding to the NONO dimer, although binding could not be saturated at micromolar concentrations. Unexpectedly, we observed cell permeability and preferential nuclear localisation of various dye-labelled peptides in live confocal microscopy, indicating the potential for developing peptide-based tools to study NONO in a cellular context.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Unión al ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Cisteína , Péptidos/metabolismo , Permeabilidad
16.
Enzyme Microb Technol ; 174: 110379, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38103484

RESUMEN

γ-Aminobutyric acid (GABA) has been widely used in the food, feed, pharmaceutical, and chemical industry fields. Previously, we developed a whole-cell catalyst capable of converting L-glutamate (L-Glu) into GABA by overexpressing the glutamate decarboxylase gene (gadz11) from Bacillus sp. Z11 in Escherichia coli BL21(DE3). However, to enhance cell permeability, a freeze-thaw treatment is required, and to enhance GADZ11 activity, pyridoxal 5'-phosphate (PLP) must be added to the reaction system. The aim of this study is to provide a more efficient approach for GABA production by engineering the recombinant E. coli above. First, the inducible expression conditions of the gadz11 in E. coli were optimized to 37 °C for 6 h. Next, an ideal engineered strain was produced via increasing cell permeability by overexpressing sulA and eliminating PLP dependence by constructing a self-sufficient system. Furthermore, an efficient whole-cell biocatalytic process was optimized. The optimal substrate concentration, cell density, and reaction temperature were 1.0 mol/L (the molecular ratio of L-Glu to L-monosodium glutamate (L-MSG) was 4:1), 15 and 37 °C, respectively. Finally, a whole-cell bioconversion procedure was performed in a 3-L bioreactor under optimal conditions. The strain could be reused for at least two cycles with GABA yield, productivity and conversion ratio of 206.2 g/L, 117.8 g/L/h and 100.0%, respectively. This is currently the highest GABA productivity from a mixture of L-Glu and L-MSG reported without the addition of cofactors or additional treatment of cells. This work demonstrates that the novel engineered E. coli strain has the potential for application in large-scale industrial GABA production.


Asunto(s)
Escherichia coli , Glutamato de Sodio , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato de Sodio/metabolismo , Fosfato de Piridoxal/metabolismo , Ácido gamma-Aminobutírico , Glutamato Descarboxilasa/genética
17.
Food Chem X ; 20: 100982, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144861

RESUMEN

Soybean protein isolate (SPI)-stabilized nanoemulsions (NEs) were formulated to encapsulate diosgenin (DIO) to enhance its water solubility and bioavailability. The influence of DIO concentrations on NEs' properties was investigated, and their environmental stability and cell permeability were also assessed. Results demonstrated that DIO significantly affected all the physicochemical properties of NEs. NEs with 1.0 mg/mL of DIO exhibited smaller droplet size (209 nm), lower polydispersity index (0.17), and higher stability coefficient (95.8 %). Furthermore, DIO-SPI NEs displayed better stability under appropriate pH (<4 or > 5), NaCl concentrations (≤0.3 M), temperatures (≤60 °C), and freeze-thaw cycles (≤2), as well as storage at 4 °C. Moreover, encapsulating DIO in NEs reduced its toxicity towards cells and enhanced its transport efficiency, which reached 3.16 âˆ¼ 4.87 × 10-6. These findings highlight the potential of SPI-based NEs as a promising carrier for the efficient delivery of DIO.

18.
J Fungi (Basel) ; 9(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37998878

RESUMEN

The presence of toxic compounds in lignocellulosic hydrolysates (LCH) is among the main barriers affecting the efficiency of lignocellulose-based fermentation processes, in particular, to produce biofuels, hindering the production of intracellular lipids by oleaginous yeasts. These microbial oils are promising sustainable alternatives to vegetable oils for biodiesel production. In this study, we explored adaptive laboratory evolution (ALE), under methanol- and high glycerol concentration-induced selective pressures, to improve the robustness of a Rhodotorula toruloides strain, previously selected to produce lipids from sugar beet hydrolysates by completely using the major C (carbon) sources present. An evolved strain, multi-tolerant not only to methanol but to four major inhibitors present in LCH (acetic acid, formic acid, hydroxymethylfurfural, and furfural) was isolated and the mechanisms underlying such multi-tolerance were examined, at the cellular envelope level. Results indicate that the evolved multi-tolerant strain has a cell wall that is less susceptible to zymolyase and a decreased permeability, based on the propidium iodide fluorescent probe, in the absence or presence of those inhibitors. The improved performance of this multi-tolerant strain for lipid production from a synthetic lignocellulosic hydrolysate medium, supplemented with those inhibitors, was confirmed.

19.
Pharmaceutics ; 15(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38004546

RESUMEN

Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.

20.
FASEB J ; 37(12): e23310, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38010922

RESUMEN

Vascular permeability is dynamically but tightly controlled by vascular endothelial (VE)-cadherin-mediated endothelial cell-cell junctions to maintain homeostasis. Thus, impairments of VE-cadherin-mediated cell adhesions lead to hyperpermeability, promoting the development and progression of various disease processes. Notably, the lungs are a highly vulnerable organ wherein pulmonary inflammation and infection result in vascular leakage. Herein, we showed that Rap1, a small GTPase, plays an essential role for maintaining pulmonary endothelial barrier function in mice. Endothelial cell-specific Rap1a/Rap1b double knockout mice exhibited severe pulmonary edema. They also showed vascular leakage in the hearts, but not in the brains. En face analyses of the pulmonary arteries and 3D-immunofluorescence analyses of the lungs revealed that Rap1 potentiates VE-cadherin-mediated endothelial cell-cell junctions through dynamic actin cytoskeleton reorganization. Rap1 inhibits formation of cytoplasmic actin bundles perpendicularly binding VE-cadherin adhesions through inhibition of a Rho-ROCK pathway-induced activation of cytoplasmic nonmuscle myosin II (NM-II). Simultaneously, Rap1 induces junctional NM-II activation to create circumferential actin bundles, which anchor and stabilize VE-cadherin at cell-cell junctions. We also showed that the mice carrying only one allele of either Rap1a or Rap1b out of the two Rap1 genes are more vulnerable to lipopolysaccharide (LPS)-induced pulmonary vascular leakage than wild-type mice, while activation of Rap1 by administration of 007, an activator for Epac, attenuates LPS-induced increase in pulmonary endothelial permeability in wild-type mice. Thus, we demonstrate that Rap1 plays an essential role for maintaining pulmonary endothelial barrier functions under physiological conditions and provides protection against inflammation-induced pulmonary vascular leakage.


Asunto(s)
Actinas , Proteínas de Unión al GTP rap1 , Animales , Ratones , Actinas/metabolismo , Cadherinas/metabolismo , Permeabilidad Capilar , Adhesión Celular/fisiología , Endotelio Vascular/metabolismo , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA