Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Mol Cancer ; 23(1): 154, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095874

RESUMEN

Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.


Asunto(s)
Epigénesis Genética , Epigenoma , Metástasis de la Neoplasia , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Animales , Regulación Neoplásica de la Expresión Génica , Mutación
2.
Neural Dev ; 19(1): 12, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970093

RESUMEN

BACKGROUND: A key step in nervous system development involves the coordinated control of neural progenitor specification and positioning. A long-standing model for the vertebrate CNS postulates that transient anatomical compartments - known as neuromeres - function to position neural progenitors along the embryonic anteroposterior neuraxis. Such neuromeres are apparent in the embryonic hindbrain - that contains six rhombomeres with morphologically apparent boundaries - but other neuromeres lack clear morphological boundaries and have instead been defined by different criteria, such as differences in gene expression patterns and the outcomes of transplantation experiments. Accordingly, the caudal hindbrain (CHB) posterior to rhombomere (r) 6 has been variably proposed to contain from two to five 'pseudo-rhombomeres', but the lack of comprehensive molecular data has precluded a detailed definition of such structures. METHODS: We used single-cell Multiome analysis, which allows simultaneous characterization of gene expression and chromatin state of individual cell nuclei, to identify and characterize CHB progenitors in the developing zebrafish CNS. RESULTS: We identified CHB progenitors as a transcriptionally distinct population, that also possesses a unique profile of accessible transcription factor binding motifs, relative to both r6 and the spinal cord. This CHB population can be subdivided along its dorsoventral axis based on molecular characteristics, but we do not find any molecular evidence that it contains multiple pseudo-rhombomeres. We further observe that the CHB is closely related to r6 at the earliest embryonic stages, but becomes more divergent over time, and that it is defined by a unique gene regulatory network. CONCLUSIONS: We conclude that the early CHB represents a single neuromere compartment that cannot be molecularly subdivided into pseudo-rhombomeres and that it may share an embryonic origin with r6.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Rombencéfalo , Pez Cebra , Animales , Pez Cebra/embriología , Rombencéfalo/embriología , Médula Espinal/embriología , Análisis de la Célula Individual , Neurogénesis/fisiología
3.
Genome Biol ; 25(1): 143, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822412

RESUMEN

BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Proteína de la Leucemia Mieloide-Linfoide/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética
4.
Comput Struct Biotechnol J ; 23: 2240-2250, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38827231

RESUMEN

The 3D conformations of chromosomes can encode biological significance, and the implications of such structures have been increasingly appreciated recently. Certain chromosome structural features, such as A/B compartmentalization, are frequently extracted from Hi-C pairwise genome contact information (physical association between different regions of the genome) and compared with linear annotations of the genome, such as histone modifications and lamina association. We investigate how additional properties of chromosome structure can be deduced using an abstract graph representation of the contact heatmap, and describe specific network properties that can have a strong connection with some of these biological annotations. We constructed chromosome structure networks (CSNs) from bulk Hi-C data and calculated a set of site-resolved (node-based) network properties. These properties are useful for characterizing certain aspects of chromosomal structure. We examined the ability of network properties to differentiate several scenarios, such as haploid vs diploid cells, partially inverted nuclei vs conventional architecture, depletion of chromosome architectural proteins, and structural changes during cell development. We also examined the connection between network properties and a series of other linear annotations, such as histone modifications and chromatin states including poised promoter and enhancer labels. We found that semi-local network properties exhibit greater capability in characterizing genome annotations compared to diffusive or ultra-local node features. For example, the local square clustering coefficient can be a strong classifier of lamina-associated domains. We demonstrated that network properties can be useful for highlighting large-scale chromosome structure differences that emerge in different biological situations.

5.
BMC Biol ; 22(1): 80, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609974

RESUMEN

BACKGROUND: The nuclear lamina links the nuclear membrane to chromosomes and plays a crucial role in regulating chromatin states and gene expression. However, current knowledge of nuclear lamina in plants is limited compared to animals and humans. RESULTS: This study mainly focused on elucidating the mechanism through which the putative nuclear lamina component protein KAKU4 regulates chromatin states and gene expression in Arabidopsis leaves. Thus, we constructed a network using the association proteins of lamin-like proteins, revealing that KAKU4 is strongly associated with chromatin or epigenetic modifiers. Then, we conducted ChIP-seq technology to generate global epigenomic profiles of H3K4me3, H3K27me3, and H3K9me2 in Arabidopsis leaves for mutant (kaku4-2) and wild-type (WT) plants alongside RNA-seq method to generate gene expression profiles. The comprehensive chromatin state-based analyses indicate that the knockdown of KAKU4 has the strongest effect on H3K27me3, followed by H3K9me2, and the least impact on H3K4me3, leading to significant changes in chromatin states in the Arabidopsis genome. We discovered that the knockdown of the KAKU4 gene caused a transition between two types of repressive epigenetics marks, H3K9me2 and H3K27me3, in some specific PLAD regions. The combination analyses of epigenomic and transcriptomic data between the kaku4-2 mutant and WT suggested that KAKU4 may regulate key biological processes, such as programmed cell death and hormone signaling pathways, by affecting H3K27me3 modification in Arabidopsis leaves. CONCLUSIONS: In summary, our results indicated that KAKU4 is directly and/or indirectly associated with chromatin/epigenetic modifiers and demonstrated the essential roles of KAKU4 in regulating chromatin states, transcriptional regulation, and diverse biological processes in Arabidopsis.


Asunto(s)
Arabidopsis , Cromatina , Animales , Humanos , Cromatina/genética , Histonas , Arabidopsis/genética , Lámina Nuclear , Regulación de la Expresión Génica , Proteínas Nucleares
6.
Methods ; 226: 151-160, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670416

RESUMEN

Chromatin loop is of crucial importance for the regulation of gene transcription. Cohesin is a type of chromatin-associated protein that mediates the interaction of chromatin through the loop extrusion. Cohesin-mediated chromatin interactions have strong cell-type specificity, posing a challenge for predicting chromatin loops. Existing computational methods perform poorly in predicting cell-type-specific chromatin loops. To address this issue, we propose a random forest model to predict cell-type-specific cohesin-mediated chromatin loops based on chromatin states identified by ChromHMM and the occupancy of related factors. Our results show that chromatin state is responsible for cell-type-specificity of loops. Using only chromatin states as features, the model achieved high accuracy in predicting cell-type-specific loops between two cell types and can be applied to different cell types. Furthermore, when chromatin states are combined with the occurrence frequency of CTCF, RAD21, YY1, and H3K27ac ChIP-seq peaks, more accurate prediction can be achieved. Our feature extraction method provides novel insights into predicting cell-type-specific chromatin loops and reveals the relationship between chromatin state and chromatin loop formation.


Asunto(s)
Factor de Unión a CCCTC , Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Cohesinas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cromatina/genética , Humanos , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Factor de Transcripción YY1/metabolismo , Factor de Transcripción YY1/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Biología Computacional/métodos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Histonas/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos
7.
Anim Cells Syst (Seoul) ; 28(1): 75-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440123

RESUMEN

The CRISPR-Cas system stands out as a promising genome editing tool due to its cost-effectiveness and time efficiency compared to other methods. This system has tremendous potential for treating various diseases, including genetic disorders and cancer, and promotes therapeutic research for a wide range of genetic diseases. Additionally, the CRISPR-Cas system simplifies the generation of animal models, offering a more accessible alternative to traditional methods. The CRISPR-Cas9 system can be used to cleave target DNA strands that need to be corrected, causing double-strand breaks (DSBs). DNA with DSBs can then be recovered by the DNA repair pathway that the CRISPR-Cas9 system uses to edit target gene sequences. High cleavage efficiency of the CRISPR-Cas9 system is thus imperative for effective gene editing. Herein, we explore several factors affecting the cleavage efficiency of the CRISPR-Cas9 system. These factors include the GC content of the protospacer-adjacent motif (PAM) proximal and distal regions, single-guide RNA (sgRNA) properties, and chromatin state. These considerations contribute to the efficiency of genome editing.

8.
Plant Environ Interact ; 5(2): e10137, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38482131

RESUMEN

Leaves are colonized by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognized as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray inoculated with six diverse leaf-colonizing bacteria. The transcriptomic changes in leaves were tracked over time and significant changes in ethylene marker (ARL2) expression were observed only 2-4 days after spray inoculation. Whole-transcriptome sequencing revealed that 4 days after inoculation, leaf transcriptional changes to colonization by nonpathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the nonpathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers resulted in disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defense. An in silico epigenetic analysis of the data was congruent with the transcriptomic analysis. These findings suggest (1) that plant responses are not rapid after spray inoculation, (2) that plant responses only differ in strength, and (3) that plants respond to high titers of nonpathogenic bacteria with pathogen-like responses.

9.
Bioessays ; 46(2): e2300084, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38013256

RESUMEN

Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.


Asunto(s)
Cromatina , Estrés Fisiológico , Cromatina/genética , Temperatura , Epigénesis Genética
10.
PeerJ ; 11: e15961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37663282

RESUMEN

Histone acetylation and deacetylation affect the patterns of gene expression in cellular differentiation, playing pivotal roles in tissue development and maintenance. For example, the intrinsic histone acetyltransferase activity of transcriptional coactivator p300 is especially required for the expression of myogenic regulatory factors including Myf5 and MyoD, and consequently for skeletal myogenesis. On the other hand, histone deacetylases (HDACs) remove the acetyl group from histones, which is critical for gene repression in stem cell fate transition. Through integrative omic analyses, we found that while some HDACs were differentially expressed at the early stage of skeletal myoblast differentiation, Hdac11 gene expression was significantly enhanced by nuclear receptor signaling. In addition, p300 and MyoD control Hdac11 expression in milieu of normal and signal-enhanced myoblast differentiation. Thus, HDAC11 may be essential to differential gene expression at the onset of myoblast differentiation.


Asunto(s)
Histona Desacetilasas , Histonas , Acetilación , Diferenciación Celular/genética , Expresión Génica , Histona Desacetilasas/genética
11.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445787

RESUMEN

The functional annotation of genomes, including chromatin modifications, is essential to understand the intricate architecture of chromatin and the consequential gene regulation. However, such an annotation remains limited for cotton genomes. Here, we conducted chromatin profiling in a wild allotetraploid cotton Gossypium darwinii (AD genome) by integrating the data of histone modification, transcriptome, and chromatin accessibility. We revealed that the A subgenome showed a higher level of active histone marks and lower level of repressive histone marks than the D subgenome, which was consistent with the expression bias between the two subgenomes. We show that the bias in transcription and histone modification between the A and D subgenomes may be caused by genes unique to the subgenome but not by homoeologous genes. Moreover, we integrate histone marks and open chromatin to define six chromatin states (S1-S6) across the cotton genome, which index different genomic elements including genes, promoters, and transposons, implying distinct biological functions. In comparison to the domesticated cotton species, we observed that 23.2% of genes in the genome exhibit a transition from one chromatin state to another at their promoter. Strikingly, the S2 (devoid of epigenetic marks) to S3 (enriched for the mark of open chromatin) was the largest transition group. These transitions occurred simultaneously with changes in gene expression, which were significantly associated with several domesticated traits in cotton. Collectively, our study provides a useful epigenetic resource for research on allopolyploid plants. The domestication-induced chromatin dynamics and associated genes identified here will aid epigenetic engineering, improving polyploid crops.


Asunto(s)
Gossypium , Histonas , Gossypium/genética , Histonas/genética , Genoma de Planta , Domesticación , Epigénesis Genética , Cromatina/genética
12.
FEBS Open Bio ; 13(9): 1658-1666, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37462508

RESUMEN

CRISPR mutagenesis is an efficient way to disrupt specific target genes in many model organisms. We previously devised a targeted CRISPR recombination method to generate intragenic recombinants of alleles in Drosophila. Here, we assessed the applicability of CRISPR targeting-induced recombination to different genetic loci. We compared the ectopic recombination rates in the male germline by CRISPR targeting at two neighboring genetic loci within the genomic region that consists of the repressed chromatin domain of the Lobe gene, and the transcriptionally active domain of PRAS40. Targeting around the transcription initiation of PRAS40 resulted in higher recombination rates of homologous chromosomes than targeting at the Lobe intron. Based on the efficient homologous recombination by CRISPR targeting observed around transcriptionally active loci, we further investigated targeted recombination between P-elements that are inserted at different genomic locations. Male recombination by CRISPR targeting of P-elements located proximally and distally to the ebony gene produced recombinants deficient for the intervening region of ebony transcription. Taken together, we suggest that targeted homologous recombination by CRISPR targeting may have specific genetic applications, such as generation of allelic combinations or chromosomal variations.


Asunto(s)
Sistemas CRISPR-Cas , Recombinación Homóloga , Animales , Sistemas CRISPR-Cas/genética , Recombinación Homóloga/genética , Mutagénesis , Drosophila/genética , Cromosomas
13.
Elife ; 122023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37467143

RESUMEN

How different intrinsic sequence variations and regulatory modifications of histones combine in nucleosomes remain unclear. To test the importance of histone variants in the organization of chromatin we investigated how histone variants and histone modifications assemble in the Arabidopsis thaliana genome. We showed that a limited number of chromatin states divide euchromatin and heterochromatin into several subdomains. We found that histone variants are as significant as histone modifications in determining the composition of chromatin states. Particularly strong associations were observed between H2A variants and specific combinations of histone modifications. To study the role of H2A variants in organizing chromatin states we determined the role of the chromatin remodeler DECREASED IN DNA METHYLATION (DDM1) in the organization of chromatin states. We showed that the loss of DDM1 prevented the exchange of the histone variant H2A.Z to H2A.W in constitutive heterochromatin, resulting in significant effects on the definition and distribution of chromatin states in and outside of constitutive heterochromatin. We thus propose that dynamic exchanges of histone variants control the organization of histone modifications into chromatin states, acting as molecular landmarks.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromatina/genética , Histonas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Heterocromatina/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nucleosomas/genética
14.
Trends Cell Biol ; 33(8): 625-629, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270323

RESUMEN

RNA-binding proteins (RBPs) are essential regulators involved in the fate determination of diverse RNA species; however, emerging evidence indicates that a subset of RBPs may physically interact with chromatin and function at the transcriptional level. Here, we highlight the recently discovered mechanisms of chromatin-interacting RBPs (ChRBPs) in the regulation of chromatin/transcriptional activities.


Asunto(s)
Cromatina , ARN , Humanos , Cromatina/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298301

RESUMEN

Transposons (TEs) account for more than 80% of the wheat genome, the highest among all known crop species. They play an important role in shaping the elaborate genomic landscape, which is the key to the speciation of wheat. In this study, we analyzed the association between TEs, chromatin states, and chromatin accessibility in Aegilops tauschii, the D genome donor of bread wheat. We found that TEs contributed to the complex but orderly epigenetic landscape as chromatin states showed diverse distributions on TEs of different orders or superfamilies. TEs also contributed to the chromatin state and openness of potential regulatory elements, affecting the expression of TE-related genes. Some TE superfamilies, such as hAT-Ac, carry active/open chromatin regions. In addition, the histone mark H3K9ac was found to be associated with the accessibility shaped by TEs. These results suggest the role of diversiform TEs in shaping the epigenetic landscape and in gene expression regulation in Aegilops tauschii. This has positive implications for understanding the transposon roles in Aegilops tauschii or the wheat D genome.


Asunto(s)
Aegilops , Aegilops/genética , Genoma de Planta , Triticum/genética , Cromatina , Epigénesis Genética
16.
Methods Mol Biol ; 2656: 109-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249868

RESUMEN

The final data-generation step of genome-wide profiling of any epigenetic parameter typically involves DNA deep sequencing which yields large datasets that must then be computationally analyzed both individually and collectively to comprehensively describe the epigenetic programming that dictates cell fate and function. Here, we describe computational pipelines for analysis of bulk mepigenomic profiling data, including whole-genome bisulfite sequencing (WGBS) to detect DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to detect genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to detect genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to detect 3-dimensional interactions among distant genomic regions. In addition, we describe Chromatin State Discovery and Characterization (ChromHMM) methodology to integrate data from these individual analyses, plus that from RNA-seq analysis of gene expression, to obtain the most comprehensive overall assessment of epigenetic programming associated with gene expression.


Asunto(s)
Cromatina , Epigenómica , Epigenómica/métodos , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Epigénesis Genética , Células Madre
17.
Methods Mol Biol ; 2656: 71-108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37249867

RESUMEN

Epigenomics encompasses analyses of a variety of different epigenetic parameters which, collectively, make up the epigenetic programming that dictates cell fate and function. Here, protocols are provided for four different epigenomic methods including whole-genome bisulfite sequencing (WGBS) to assess DNA methylation patterns, chromatin immunoprecipitation-sequencing (ChIP-seq) to assess genomic patterns of either specific histone modifications or bound transcription factors, the assay for transposase-accessible chromatin-sequencing (ATAC-seq) to assess genomic patterns of chromatin accessibility, and high-throughput chromosome conformation capture-sequencing (Hi-C-seq) to assess three-dimensional interactions among distant genomic regions, plus computational methodology to integrate data from those four methodologies using Chromatin State Discovery and Characterization (ChromHMM) to obtain the most comprehensive overall assessment of epigenetic programming.


Asunto(s)
Cromatina , Epigenómica , Epigenómica/métodos , Análisis de Secuencia de ADN/métodos , Cromatina/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Epigénesis Genética , Células Madre
18.
Bioinform Biol Insights ; 17: 11779322231167971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124129

RESUMEN

Eukaryotic non-coding regulatory features contribute significantly to cellular plasticity which on aberration leads to cellular malignancy. Enhancers are cis-regulatory elements that contribute to the development of resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer leading to poor clinical outcome. ER is vital for therapeutic targets in ER-positive breast cancer. Here, we review and report the different regulatory features present on ER with the objective to delineate potential mechanisms which may contribute to development of resistance. The UCSC Genome Browser, data mining, and bioinformatics tools were used to review enhancers, transcription factors (TFs), histone marks, long non-coding RNAs (lncRNAs), and variants residing in the non-coding region of the ER gene. We report 7 enhancers, 3 of which were rich in TF-binding sites and histone marks in a cell line-specific manner. Furthermore, some enhancers contain estrogen resistance variants and sites for lncRNA. Our review speculates putative models suggesting potential aberrations in gene regulation and expression if these regulatory landscapes and assemblies are altered. This review gives an interesting perspective in designing integrated in vitro studies including non-coding elements to study development of endocrine resistance in ER-positive breast cancer.

19.
Cell Rep ; 42(3): 112257, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36930642

RESUMEN

The piRNA pathway in mosquitoes differs substantially from other model organisms, with an expanded PIWI gene family and functions in antiviral defense. Here, we define core piRNA clusters as genomic loci that show ubiquitous piRNA expression in both somatic and germline tissues. These core piRNA clusters are enriched for non-retroviral endogenous viral elements (nrEVEs) in antisense orientation and depend on key biogenesis factors, Veneno, Tejas, Yb, and Shutdown. Combined transcriptome and chromatin state analyses identify transcriptional readthrough as a conserved mechanism for cluster-derived piRNA biogenesis in the vector mosquitoes Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles gambiae. Comparative analyses between the two Aedes species suggest that piRNA clusters function as traps for nrEVEs, allowing adaptation to environmental challenges such as virus infection. Our systematic transcriptome and chromatin state analyses lay the foundation for studies of gene regulation, genome evolution, and piRNA function in these important vector species.


Asunto(s)
Aedes , ARN de Interacción con Piwi , Animales , Cromatina , ARN Interferente Pequeño/genética , Mosquitos Vectores/genética , Aedes/genética
20.
Front Cell Dev Biol ; 11: 1097780, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36727112

RESUMEN

Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA