Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Chem Biol Interact ; 365: 110066, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35931200

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most malignant human cancers, with a high mortality rate worldwide. Within an HCC tumor, cancer stem cells (CSCs) are responsible for tumor maintenance and progression and may contribute to resistance to standard HCC treatments. Previously, we characterized CD133+ cells as CSCs in primary HCC and identified chromenopyrimidinone (CPO) as a novel therapeutic for the effective treatment of CD133+ HCC. However, the biological function and molecular mechanism of CD133 remain unclear. Epigenetic alterations of CSCs have impacts on tumor initiation, progression, and therapeutic response. Here, we found that pharmacological and genetic depletion of CD133 in HCC attenuated the activity of DNA methyltransferases via control of DNMT3B stabilization. Genes were ranked by degree of promoter hypo/hyper methylation and significantly differential expression to create an "epigenetically activated by CPO" ranked genes list. Through this epigenetic analysis, we found that CPO treatment altered DNA methylation-mediated oncogenic signaling in HCCs. Specifically, CPO treatment inhibited Adenylyl cyclase-associated protein 1 (CAP1) expression, thereby reducing FAK/ERK activity and EMT-related proteins in HCC. Moreover, CPO improved the efficacy of sorafenib by inhibiting CAP1 expression and FAK/ERK activation in sorafenib-resistant HCC. These novel mechanistic insights may ultimately open up avenues for strategies targeting DNA methylation in liver cancer stem cells and provides novel therapeutic function of CPO for the effective treatment of sorafenib-resistant HCC.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas , Pirimidinonas/farmacología , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/farmacología , Adenilil Ciclasas/uso terapéutico , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas del Citoesqueleto/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo , Oligopéptidos , Sorafenib/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico
2.
Cancers (Basel) ; 12(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397206

RESUMEN

Hepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133+ cells control tumor maintenance and progression, compounds that target CD133+ cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133+ cells in mixed HCC cell populations. CPO not only significantly inhibited cell proliferation in HCC cells exhibiting different CD133 expression levels, but also effectively induced apoptosis and increased the expression of LC3-II in HCC cells. CPO also exhibits in vivo therapeutic efficiency in HCC. Specifically, CPO suppressed the expression of CD133 by altering the subcellular localization of CD133 from the membrane to lysosomes in CD133+ HCC cells. Moreover, CPO treatment induced point mutations in the ADRB1, APOB, EGR2, and UBE2C genes and inhibited the expression of these proteins in HCC and the expression of UBE2C is particularly controlled by CD133 expression among those four proteins in HCC. Our results suggested that CPO may suppress stemness and malignancies in vivo and in vitro by decreasing CD133 and UBE2C expression in CD133+ HCC. Our study provides evidence that CPO could act as a novel therapeutic agent for the effective treatment of CD133+ HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA