Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Bone Rep ; 21: 101763, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38666049

RESUMEN

Acid transport is required for bone synthesis by osteoblasts. The osteoblast basolateral surface extrudes acid by Na+/H+ exchange, but apical proton uptake is undefined. We found high expression of the Cl-/H+ exchanger ClC3 at the bone apical surface. In mammals ClC3 functions in intracellular vesicular chloride transport, but when we found Cl- dependency of H+ transport in osteoblast membranes, we queried whether ClC3 Cl-/H+ exchange functions in bone formation. We used ClC3 knockout animals, and closely-related ClC5 knockout animals: In vitro studies suggested that both ClC3 and ClC5 might support bone formation. Genotypes were confirmed by total exon sequences. Expression of ClC3, and to a lesser extent of ClC5, at osteoblast apical membranes was demonstrated by fluorescent antibody labeling and electron microscopy with nanometer gold labeling. Animals with ClC3 or ClC5 knockouts were viable. In ClC3 or ClC5 knockouts, bone formation decreased ~40 % by calcein and xylenol orange labeling in vivo. In very sensitive micro-computed tomography, ClC5 knockout reduced bone relative to wild type, consistent with effects of ClC3 knockout, but varied with specific histological parameters. Regrettably, ClC5-ClC3 double knockouts are not viable, suggesting that ClC3 or ClC5 activity are essential to life. We conclude that ClC3 has a direct role in bone formation with overlapping but probably slightly smaller effects of ClC5. The mechanism in mineral formation might include ClC H+ uptake, in contrast to ClC3 and ClC5 function in cell vesicles or other organs.

2.
Heliyon ; 10(3): e24984, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333829

RESUMEN

Objective: To study the role and mechanism of chloride channel-3 (ClC-3) in the formation of hypertrophic scar by constructing ClC-3 interference vectors and examining their effects on human hypertrophic scar fibroblasts (HSFB). Methods: Human HSFB and human normal skin fibroblasts (NSFB) were used in this study, and ClC-3 interference vectors were constructed to transfect cells. ClC-3 inhibitors NPPB and Tamoxifen were used to treat cells. Cell migration and the expression of TGF-ß/Smad, CollagenⅠ,CollagenⅢ were examined to explore the role of ClC-3 in the formation of hypertrophic scar. Results: Compared with the normal skin tissue, the positive expression of ClC-3 and TGF-ß in the scar tissue was significantly increased. The relative expression of ClC-3 and TGF-ß1 in HSFB cells was higher than that in NSFB cells. Interfering with the expression of CLC-3 can inhibit the migration of HSFB cells and the expression of TGF- ß/Smad, CollagenⅠ/Ⅲ. The experiment of HSFB cells treated by CLC-3 inhibitors can also obtain similar results. Conclusion: Inhibiting CLC-3 can reduce the formation of hypertrophic scars.

3.
Biol Pharm Bull ; 47(1): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38171770

RESUMEN

Cl- influx and efflux through Cl- channels play a role in regulating the homeostasis of biological functions. Therefore, the hyperfunction or dysfunction of Cl- channels elicits pathological mechanisms. The Cl- channel superfamily includes voltage-gated Cl- (ClC) channels, Ca2+-activated Cl- channels (ClCa; TMEM16A/TMEM16B), cystic fibrosis transmembrane conductance regulator channels, and ligand-gated Cl- channels. These channels are ubiquitously expressed to regulate ion homeostasis, muscle tonus, membrane excitability, cell volume, survival, neurotransmission, and transepithelial transport. The activation or inhibition of Cl- channels changes the membrane potential, thereby affecting cytosolic Ca2+ signals. An elevation in cytosolic [Ca2+] triggers physiological and pathological responses in most cells. However, the roles of Cl- channels have not yet been examined as extensively as cation (Na+, Ca2+, and K+) channels. We recently reported the functional expression of: (i) TMEM16A/ClCa channels in portal vein and pulmonary arterial smooth muscle cells (PASMC), pinealocytes, and brain capillary endothelial cells; (ii) TMEM16B/ClCa channels in pinealocytes; (iii) ClC-3 channels in PASMC and chondrocytes; and (iv) ClC-7 channels in chondrocytes. We also showed that the down-regulation of TMEM16A and ClC-7 channel expression was associated with cirrhotic portal hypertension and osteoarthritis, respectively, whereas the enhanced expression of TMEM16A and ClC-3 channels was involved in the pathogenesis of cerebral ischemia and pulmonary arterial hypertension, respectively. Further investigations on the physiological/pathological functions of Cl- channels will provide insights into biological functions and contribute to the screening of novel target(s) of drug discovery for associated diseases.


Asunto(s)
Canales de Cloruro , Células Endoteliales , Células Endoteliales/metabolismo , Canales de Cloruro/fisiología , Potenciales de la Membrana , Encéfalo/metabolismo
4.
Front Cell Dev Biol ; 11: 1196684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287451

RESUMEN

Introduction: Metabolic disorders are an important health concern that threatens life and burdens society severely. ClC-3 is a member of the chloride voltage-gated channel family, and ClC-3 deletion improved the phenotypes of dysglycemic metabolism and the impairment of insulin sensitivity. However, the effects of a healthy diet on transcriptome and epigenetics in ClC-3-/- mice were not explained in detail. Methods: Here, we performed transcriptome sequencing and Reduced Representation Bisulfite Sequencing for the liver of 3 weeks old WT and ClC-3-/- mice consuming a normal diet to insight into the epigenetic and transcriptomic alterations of ClC-3 deficient mice. Results: In the present study, we found that ClC-3-/- mice that were younger than 8 weeks old had smaller bodies compared to ClC-3+/+ mice with ad libitum self-feeding normal diet, and ClC-3-/- mice that were older than 10 weeks old had a similar body weight. Except for the spleen, lung, and kidney, the average weight of the heart, liver, and brain in ClC-3-/- mice was lower than that in ClC-3+/+ mice. TG, TC, HDL, and LDL in fasting ClC-3-/- mice were not significantly different from those in ClC-3+/+ mice. Fasting blood glucose in ClC-3-/- mice was lower than that in ClC-3+/+ mice; the glucose tolerance test indicated the response to blood glucose increasing for ClC-3-/- mice was torpid, but the efficiency of lowering blood glucose was much higher once started. Transcriptomic sequencing and reduced representation bisulfite sequencing for the liver of unweaned mice indicated that ClC-3 deletion significantly changed transcriptional expression and DNA methylation levels of glucose metabolism-related genes. A total of 92 genes were intersected between DEGs and DMRs-targeted genes, of which Nos3, Pik3r1, Socs1, and Acly were gathered in type II diabetes mellitus, insulin resistance, and metabolic pathways. Moreover, Pik3r1 and Acly expressions were obviously correlated with DNA methylation levels, not Nos3 and Socs1. However, the transcriptional levels of these four genes were not different between ClC-3-/- and ClC-3+/+ mice at the age of 12 weeks. Discussion: ClC-3 influenced the methylated modification to regulate glucose metabolism, of which the gene expressions could be driven to change again by a personalized diet-style intervention.

6.
Neurochem Int ; 166: 105534, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37061192

RESUMEN

BACKGROUND: Increasing evidences have reported the critical roles of circular RNA (circRNA) in gliomas. Whereas, the role of circXRCC5 in glioma and its underlying molecular mechanism has not been reported. METHODS: The RNA transcripts and protein levels were detected using qRT-PCR, immunohistochemistry (IHC) and in situ hybridization (ISH) assays. Cell proliferation was characterized by CCK-8 and clone formation assays. The formation of NLRP3-inflammasomes was identified using immunofluorescence (IF) and Western blot assays. The cytokines were determined using immunosorbent assay (ELISA) and Western blot assays. The molecular interactions were validated using RIP and pull-down assays. RESULTS: circXRCC5 was over-expressed in glioma and positively related to the shorter survival rate, advanced TNM stage and larger tumor volume. circXRCC5 knockdown inhibited cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. Subsequently, we found that circXRCC5 maintained mRNA stability of CLC3 by binding to IGF2BP2. Furthermore, CLC3 accelerated SGK1 expression via PI3K/PDK1/AKT pathway. The rescue experiments showed that both overexpression of CLC3 or SGK1 dramatically alleviated circXRCC5 knockdown-induced inhibition of cell proliferation and NLRP3-mediated inflammasome activation of glioma cells. In vivo, our study proved that circXRCC5 accelerated glioma growth by regulating CLC3/SGK1 axis. CONCLUSION: Our data concluded that circXRCC5 formed a complex with IGF2BP2 to regulate inflammasome activation and tumor growth via CLC3/SGK1 axis.


Asunto(s)
Glioma , ARN Circular , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Inflamasomas/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
7.
Int J Pharm ; 628: 122297, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36261097

RESUMEN

Protective autophagy can be activated by external stimuli such as chemotherapy (CT) and photothermal therapy (PTT), leading to tumour resistance. As a key subcellular for autophagy, lysosomal dysfunction is crucial for autophagy suppression. Furthermore, lysosomal drug sequestration enhances basic drug resistance such as doxorubicin (DOX), which is trapped away from its target site, namely, the nucleus. Moreover, most of nanodrug delivery systems are internalised to lysosome for degradation, which further leads to DOX resistance. Lysosome serves as an essential organelle in drug resistance mechanisms, whose acidification arrest provides a potential strategy to inhibit autophagy and lysosomal drug sequestration simultaneously. The chloride channel-3 (ClC-3) protein is known as an important Cl--H+ transporter to maintain lysosomal pH at low values of various human cells. Herein, a black phosphorus-based theranostic nanoplatform of BP-A-S@D is constructed, and HeLa cells are used as a model to verify the effect of ClC-3 on tumour lysosomal acidification and autophagy regulation. Consequently, ClC-3 silencing inhibits not only protective autophagy to sensitise chemo-photothermal therapy, but also DOX resistance by suppressing lysosomal acidification. Therefore, ClC-3 silencing could simultaneously inhibit autophagy and lysosomal drug sequestration to improve anti-tumour efficiency.


Asunto(s)
Canales de Cloruro , Terapia Fototérmica , Humanos , Autofagia , Canales de Cloruro/genética , Doxorrubicina/farmacología , Doxorrubicina/metabolismo , Células HeLa , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Fototerapia
8.
Biol Pharm Bull ; 45(11): 1684-1691, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35989293

RESUMEN

Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling of the pulmonary artery, which is mainly attributed to the excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) comprising the medial layer of pulmonary arteries. The activity of ion channels associated with cytosolic Ca2+ signaling regulates the pathogenesis of PAH. Limited information is currently available on the role of Cl- channels in PASMCs. Therefore, the functional expression of ClC3 channels/transporters was herein investigated in the PASMCs of normal subjects and patients with idiopathic pulmonary arterial hypertension (IPAH). Expression analyses revealed the upregulated expression of ClC3 channels/transporters at the mRNA and protein levels in IPAH-PASMCs. Hypoosmotic perfusion (230 mOsm) evoked swelling-activated Cl- currents (ICl-swell) in normal-PASMCs, whereas 100 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) exerted the opposite effects. The small interfering RNA (siRNA) knockdown of ClC3 did not affect ICl-swell. On the other hand, ICl-swell was larger in IPAH-PASMCs and inhibited by DIDS and the siRNA knockdown of ClC3. IPAH-PASMCs grew more than normal-PASMCs. The growth of IPAH-PASMCs was suppressed by niflumic acid and DIDS, but not by 9-anthracenecarboxylic acid or T16Ainh-A01. The siRNA knockdown of ClC3 also inhibited the proliferation of IPAH-PASMCs. Collectively, the present results indicate that upregulated ClC3 channels/transporters are involved in ICl-swell and the excessive proliferation of IPAH-PASMCs, thereby contributing to the pathogenesis of PAH. Therefore, ClC3 channels/transporters have potential as a target of therapeutic drugs for the treatment of PAH.


Asunto(s)
Miocitos del Músculo Liso , Humanos , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Hipertensión Pulmonar Primaria Familiar/genética , Hipertensión Pulmonar Primaria Familiar/patología , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , ARN Interferente Pequeño/farmacología , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Células Cultivadas
9.
J Orthop Surg Res ; 17(1): 338, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794618

RESUMEN

BACKGROUND: ClC-3 chloride channels promote osteogenic differentiation. Transforming growth factor-ß1 (TGF-ß1) and its receptors are closely related to ClC-3 chloride channels, and canonical TGF-ß1 signaling is largely mediated by Smad proteins. The current study aimed to explore the role of the Smad2/3/4 signaling pathway in the mechanism by which ClC-3 chloride channels regulate osteogenic differentiation in osteoblasts. METHODS: First, real-time PCR and western blotting were used to detect the expression of Smad and mitogen-activated protein kinase (MAPK) proteins in response to ClC-3 chloride channels. Second, immunocytochemistry, coimmunoprecipitation (Co-IP) and immunofluorescence analyses were conducted to assess formation of the Smad2/3/4 complex and its translocation to the nucleus. Finally, markers of osteogenic differentiation were determined by real-time PCR, western blotting, ALP assays and Alizarin Red S staining. RESULTS: ClC-3 chloride channels knockdown led to increased expression of Smad2/3 but no significant change in p38 or Erk1/2. Furthermore, ClC-3 chloride channels knockdown resulted in increases in the formation of the Smad2/3/4 complex and its translocation to the nucleus. In contrast, the inhibition of TGF-ß1 receptors decreased the expression of Smad2, Smad3, p38, and Erk1/2 and the formation of the Smad2/3/4 complex. Finally, the expression of osteogenesis-related markers were decreased upon ClC-3 and Smad2/3/4 knockdown, but the degree to which these parameters were altered was decreased upon the knockdown of ClC-3 and Smad2/3/4 together compared to independent knockdown of ClC-3 or Smad2/3/4. CONCLUSIONS: The Smad2/3 proteins respond to changes in ClC-3 chloride channels. The Smad2/3/4 signaling pathway inhibits osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells.


Asunto(s)
Osteogénesis , Factor de Crecimiento Transformador beta1 , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Osteogénesis/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo
10.
Diabetes Res Clin Pract ; 190: 109970, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35792204

RESUMEN

BACKGROUND: Diabetic encephalopathy(DE) is a neurological complication of diabetes, and its pathogenesis is unclear. Current studies indicate that insulin receptors and downstream signaling pathways play a key role in the occurrence and development of DE. Additionally, CLC-3, a member of the CLC family of anion channels and transporters, is closely related to the secretion and processing of insulin. Here, we investigated the changes and putative roles of CLC-3 in diabetic encephalopathy. RESULTS: To this aim, we combined lentivirus and adeno-associated virus gene transfer to change the expression level of CLC-3 in the HT-22 hippocampal cell line and hippocampal CA1. We studied the role of CLC-3 in DE through the Morris water maze test.CLC-3 expression increased significantly in HT-22 cells cultured with high glucose and STZ-induced DE model hippocampus. Moreover, Insulin receptor(IR) and downstream PI3K/AKT/GSK3ß signaling pathways were also dysfunctional. After knocking down CLC-3, impaired cell proliferation, apoptosis, IR and the downstream PI3K/AKT/GSK3ß signaling pathways were significantly improved. However, when CLC-3 was overexpressed, the neurotoxicity induced by high glucose was further aggravated. Rescue experiments found that through the use of inhibitors such as GSK3ß, the PI3K/AKT/GSK3ß signaling pathways pathway changes with the use of inhibition, and the expression of related downstream signaling molecules such as Tau and p-Tau also changes accordingly. Using adeno-associated virus gene transfer to knock down CLC-3 in the hippocampal CA1 of the DE model, the IR caused by DE and the dysfunction of the downstream PI3K/AKT/GSK3ß signaling pathway were significantly improved. In addition, the impaired spatial recognition of DE was partially restored. CONCLUSION: Our study proposes that CLC-3, as a key molecule, may regulate insulin receptor signaling and downstream PI3K/AKT/GSK3ß signaling pathways and affect the pathogenesis of diabetic encephalopathy.


Asunto(s)
Encefalopatías , Canales de Cloruro , Disfunción Cognitiva , Diabetes Mellitus , Animales , Canales de Cloruro/genética , Disfunción Cognitiva/genética , Técnicas de Silenciamiento del Gen , Glucosa , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética
11.
Neuroscience ; 494: 104-118, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35436516

RESUMEN

Circular RNAs (circRNAs), forming a covalently closed loop, are identified as a special subgroup of non-coding RNAs. Herein, we investigated the function and underlying mechanism of circXRCC5, generated from the XRCC5 gene, in glioma progression. Bioinformatics analysis was employed to determine the genomic information of circXRCC5 derived from XRCC5 pre-mRNA. Quantitative real-time PCR was conducted to examine the expression of circXRCC5 in glioma tissues and cells. Stable knockdown of circXRCC5 in U87 and U251 cells was established to assess its' biological functions. Cell Counting Kit-8, EdU incorporation, flow cytometry and transwell assay were performed to evaluate cell proliferation, apoptosis, migration and invasion, respectively. The circRNA-miRNA-mRNA regulatory network was verified using luciferase reporter assay and RNA immunoprecipitation. The samples were subjected to CHIP to ascertain the transcriptional regulation of XRCC5 at the promoter region of CLC3. Up-regulation of circXRCC5 was observed in glioma tissues and cell lines, and indicated poor prognosis of glioma patients. Knockdown of circXRCC5 suppressed cell proliferation, migration and invasion, while facilitated apoptosis. Mechanistically, circXRCC5 acted as a molecular sponge for miR-490-3p in a sequence-specific manner. There was a reciprocal negative feedback between circXRCC5 and miR-490-3p in an Argonaute2-dependent manner. Moreover, circXRCC5 acted as a sponge of miR-490-3p to regulate the expression of downstream target gene XRCC5, thus activating the transcription of CLC3, which fostered the progression of glioma. Collectively, circXRCC5 promoted glioma progression via the miR-490-3p/XRCC5/CLC3 ceRNA network, providing a novel prognostic biomarker and a prospective target for glioma treatment.


Asunto(s)
Glioma , MicroARNs , ARN Circular , Biomarcadores , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Estudios Prospectivos , ARN Circular/genética
12.
Can J Physiol Pharmacol ; 100(7): 584-593, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413227

RESUMEN

Chemotherapy is one of the most important strategies in the treatment of cancer; however, chemoresistance restricts the effect of chemotherapy. Growing reports suggest that chloride channel-3 (ClC-3) is involved in regulating the sensitivity of multiple chemotherapeutic agents in the chemotherapy of various tumours, while its role in the chemotherapy of cholangiocarcinoma (CCA) is still poorly understood. Herein, we observed that ClC-3 was highly expressed in CCA chemoresistant tissues and CCA cisplatin-resistant cells QBC939/DDP, and the sensitivities of QBC939 and QBC939/DDP cells to cisplatin were all increased after inhibition of ClC-3. Further mechanism exploration revealed that ClC-3 knockdown reduced the level of autophagy. Furthermore, in both QBC939 and QBC939/DDP cells, the autophagy agonist rapamycin eliminated the increased cisplatin sensitivity of ClC-3 knockdown without affecting ClC-3 expression. Collectively, all the findings demonstrate that ClC-3 knockdown increases cisplatin-induced cell death in CCA cells though inhibiting autophagy, regardless of the occurrence of cisplatin resistance. In addition, our results also suggest that targeted inhibition of ClC-3 may be a potential strategy for chemosensitization in CCA chemotherapy.


Asunto(s)
Antineoplásicos , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Antineoplásicos/farmacología , Apoptosis , Autofagia , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Línea Celular Tumoral , Canales de Cloruro , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Cisplatino/metabolismo , Cisplatino/farmacología , Resistencia a Antineoplásicos , Humanos
13.
J Neurosci ; 42(15): 3080-3095, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35241492

RESUMEN

ClC-3, ClC-4, and ClC-5 are electrogenic chloride/proton exchangers that can be found in endosomal compartments of mammalian cells. Although the association with genetic diseases and the severe phenotype of knock-out animals illustrate their physiological importance, the cellular functions of these proteins have remained insufficiently understood. We here study the role of two Clcn3 splice variants, ClC-3b and ClC-3c, in granular exocytosis and catecholamine accumulation of adrenal chromaffin cells using a combination of high-resolution capacitance measurements, amperometry, protein expression/gene knock out/down, rescue experiments, and confocal microscopy. We demonstrate that ClC-3c resides in immature as well as in mature secretory granules, where it regulates catecholamine accumulation and contributes to the establishment of the readily releasable pool of secretory vesicles. The lysosomal splice variant ClC-3b contributes to vesicle priming only with low efficiency and leaves the vesicular catecholamine content unaltered. The related Cl-/H+ antiporter ClC-5 undergoes age-dependent downregulation in wild-type conditions. Its upregulation in Clcn3-/- cells partially rescues the exocytotic mutant defect. Our study demonstrates how different CLC transporters with similar transport functions, but distinct localizations can contribute to vesicle functions in the regulated secretory pathway of granule secretion in chromaffin cells.SIGNIFICANCE STATEMENT Cl-/H+ exchangers are expressed along the endosomal/lysosomal system of mammalian cells; however, their exact subcellular functions have remained insufficiently understood. We used chromaffin cells, a system extensively used to understand presynaptic mechanisms of synaptic transmission, to define the role of CLC exchangers in neurosecretion. Disruption of ClC-3 impairs catecholamine accumulation and secretory vesicle priming. There are multiple ClC-3 splice variants, and only expression of one, ClC-3c, in double Cl-/H+ exchanger-deficient cells fully rescues the WT phenotype. Another splice variant, ClC-3b, is present in lysosomes and is not necessary for catecholamine secretion. The distinct functions of ClC-3c and ClC-3b illustrate the impact of expressing multiple CLC transporters with similar transport functions and separate localizations in different endosomal compartments.


Asunto(s)
Células Cromafines , Protones , Animales , Catecolaminas/metabolismo , Cloruros/metabolismo , Células Cromafines/metabolismo , Exocitosis/fisiología , Mamíferos , Ratones , Ratones Noqueados , Vesículas Secretoras/metabolismo
14.
Biochem J ; 479(5): 629-640, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35175311

RESUMEN

Iodide (I-) is crucial to thyroid function, and its regulation in thyrocytes involves ion transporters and reactive oxygen species (ROS). However, the extent of 2Cl-/H+ exchanger (ClC-3) involvement in the iodide (I-) efflux from thyrocytes remains unclear. Therefore, we examined the effects of ClC-3 on I- efflux. ClC-3 expression was found to significantly alter the serum TT3 and TT4 concentrations in mice. We further found that excess I- stimulation affected ClC-3 expression, distribution, and I- efflux in FRTL-5 cells. Immunofluorescence analyses indicated that ClC-3 mainly accumulated in the cell membrane and co-localized with ß-tubulins after 24 h of excess I- treatment, and that this process depended on ROS production. Thus, ClC-3 may be involved in I- efflux at the apical pole of thyrocytes via excess I--induced ROS production and ß-tubulin polymerization. Our results reveal novel insights into the role of ClC-3 in I- transport and thyroid function.


Asunto(s)
Canales de Cloruro/metabolismo , Células Epiteliales Tiroideas , Animales , Transporte Biológico , Yoduros , Ratones , Protones , Especies Reactivas de Oxígeno , Tubulina (Proteína)
15.
Front Cell Neurosci ; 16: 920075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37124866

RESUMEN

ClC-3 Cl-/H+ exchangers are expressed in multiple endosomal compartments and likely modify intra-endosomal pH and [Cl-] via the stoichiometrically coupled exchange of two Cl- ions and one H+. We studied pain perception in Clcn3-/- mice and found that ClC-3 not only modifies the electrical activity of peripheral nociceptors but is also involved in inflammatory processes in the spinal cord. We demonstrate that ClC-3 regulates the number of Na v and K v ion channels in the plasma membrane of dorsal root ganglion (DRG) neurons and that these changes impair the age-dependent decline in excitability of sensory neurons. To distinguish the role of ClC-3 in Cl-/H+ exchange from its other functions in pain perception, we used mice homozygous for the E281Q ClC-3 point mutation (Clcn3E281Q/E281Q ), which completely eliminates transport activity. Since ClC-3 forms heterodimers with ClC-4, we crossed these animals with Clcn4 -/- to obtain mice completely lacking in ClC-3-associated endosomal chloride-proton transport. The electrical properties of Clcn3 E281Q/E281Q /Clcn4-/- DRG neurons were similar to those of wild-type cells, indicating that the age-dependent adjustment of neuronal excitability is independent of ClC-3 transport activity. Both Clcn3-/- and Clcn3E281Q/E281Q /Clcn4 -/- animals exhibited microglial activation in the spinal cord, demonstrating that competent ClC-3 transport is needed to maintain glial cell homeostasis. Our findings illustrate how reduced Cl-/H+ exchange contributes to inflammatory responses and demonstrate a role for ClC-3 in the homeostatic regulation of neuronal excitability beyond its function in endosomal ion balance.

16.
Channels (Austin) ; 15(1): 516-527, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34414859

RESUMEN

Estradiol regulates thyroid function, and chloride channels are involved in the regulation of thyroid function. However, little is known about the role of chloride channels in the regulation of thyroid functions by estrogen. In this study, the effects of estrogen on chloride channel activities in human thyroid Nthy-ori3-1 cells were therefore investigated using the whole cell patch-clamp technique. The results showed that the extracellular application of 17ß-estradiol (E2) activated Cl- currents, which reversed at a potential close to Cl- equilibrium potential and showed remarkable outward rectification and an anion permeability of I- > Br- > Cl- > gluconate. The Cl- currents were inhibited by the chloride channel blockers, NPPB and tamoxifen. Quantitative Real-time PCR results demonstrated that ClC-3 expression was highest in ClC family member in Nthy-ori3-1 cells. The down-regulation of ClC-3 expression by ClC-3 siRNA inhibited E2-induced Cl- current. The Cl- current was blocked by the estrogen receptor antagonist, ICI 182780 (fulvestrant). Estrogen receptor alpha (ERα) and not estrogen receptor beta was the protein expressed in Nthy-ori3-1 cells, and the knockdown of ERα expression with ERα siRNA abolished E2-induced Cl- currents. Estradiol can promote the accumulation of ClC-3 in cell membrane. ERα and ClC-3 proteins were partially co-localized in the cell membrane of Nthy-ori3-1 cells after estrogen exposure. The results suggest that estrogen activates chloride channels via ERα in normal human thyroid cells, and ClC-3 proteins play a pivotal role in the activation of E2-induced Cl- current.


Asunto(s)
Receptor alfa de Estrógeno , Glándula Tiroides , Canales de Cloruro/genética , Cloruros/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Humanos , Glándula Tiroides/metabolismo
17.
Biomed Pharmacother ; 138: 111407, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33765585

RESUMEN

Epithelial ovarian cancers (EOC) present as malignant tumors with high mortality in the female reproductive system diseases. Acquired resistance to paclitaxel (PTX), one of the first-line treatment of EOC, remains a therapeutic challenge. ClC-3, a member of the voltage-gated Cl- channels, plays an essential role in a variety of cellular activities, including chemotherapeutic resistance. Here, we demonstrated that the protein expression and channel function of ClC-3 was upregulated in PTX resistance A2780/PTX cells compared with its parental A2780 cells. The silence of ClC-3 expression by siRNA in A2780/PTX cells partly recovered the PTX sensitivity through restored the G2/M arrest and resumed the chloride channel blocked. ClC-3 siRNA both inhibited the expression of ClC-3 and ß-tubulin, whereas the ß-tubulin siRNA reduced the expression of itself only, without affecting the expression of ClC-3. Moreover, treatment of ClC-3 siRNA in A2780/PTX cells increased the polymerization ratio of ß-tubulin, and the possibility of proteins interaction between ClC-3 and ß-tubulin was existing. Take together, the over-expression of ClC-3 protein in PTX-resistance ovarian cancer cells promotes the combination of ClC-3 and ß-tubulin, which in turn increase the ration of free form and decrease the quota of the polymeric form of ß-tubulin, and finally reduce the sensitivity to PTX. Our findings elucidated a novel function of ClC-3 in regulating PTX resistance and ClC-3 could serve as a potential target to overcome the PTX resistance ovarian cancer.


Asunto(s)
Canales de Cloruro/biosíntesis , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/metabolismo , Paclitaxel/farmacología , Moduladores de Tubulina/metabolismo , Tubulina (Proteína)/metabolismo , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Canales de Cloruro/química , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Polimerizacion/efectos de los fármacos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
18.
Eur J Pharmacol ; 898: 173997, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33676941

RESUMEN

Hypotonic stimulus enlarges cell volume and increased cell proliferation with the exact mechanisms unknown. Glucocorticoid-induced kinase-1 (SGK1) is a serine/threonine kinase that can be regulated by osmotic pressure. We have revealed that SGK1 was activated by hypotonic solution-induced lowering of intracellular Cl- concentration. Therefore, we further examined whether SGK1 mediated hypotonic solution-induced proliferation and the internal mechanisms in basilar smooth muscle cells (BASMCs). In the present study, BrdU incorporation assay, flow cytometry, western blotting were performed to evaluate cell viability, cell cycle transition, and the expression of cell cycle regulators and other related proteins. We found that silence of SGK1 largely blunted hypotonic challenge-induced increase in cell viability and cell cycle transition from G0/G1 phase to S phase, whereas overexpression of SGK1 showed the opposite effects. The effect of SGK1 on proliferation was related to the upregulation of cyclin D1 and cyclin E1, and the downregulation of p27 and p21, which is mediated by the interaction between SGK1 and cAMP responsive element-binding protein (CREB). Moreover, we overexpressed ClC-3 Cl- channel to further verify the role of SGK1 in low Cl- environment-induced proliferation. The results revealed that overexpression of ClC-3 further enhanced hypotonic solution-induced cell viability, cell cycle transition, and CREB activation, which were alleviated or potentiated by silencing or overexpression of SGK1. In summary, this study provides compelling evidences that SGK1, as a Cl--sensitive kinase, is a critical link between low osmotic pressure and proliferation in BASMCs, and shed a new light on the treatment of proliferation-associated cardiovascular diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Canales de Cloruro/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Soluciones Hipotónicas/farmacología , Proteínas Inmediatas-Precoces/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Arteria Basilar/efectos de los fármacos , Arteria Basilar/enzimología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Canales de Cloruro/genética , Proteínas Inmediatas-Precoces/genética , Masculino , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Presión Osmótica , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Ratas Sprague-Dawley , Transducción de Señal
19.
Biochem Biophys Res Commun ; 537: 29-35, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33383561

RESUMEN

Articular chondrocytes are exposed to dynamic osmotic environments during normal joint loading, and thus, require effective volume regulatory mechanisms. A regulatory volume decrease (RVD) is one of the mechanisms for protecting chondrocytes from swelling and damage. Swelling-activated Cl- currents (ICl,swell) are responsible for the RVD, but the molecular identity in chondrocytes is largely unknown. In this study, we reveal that in human OUMS-27 chondrocytes, ICl,swell can be elicited by hypoosmotic stimulation (180 mOsm) and be inhibited by classical Cl- channel blockers, 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and be attenuated by siRNA knockdown of ClC-3. Our molecular analyses revealed that ClC-3A is expressed as a major splice variant in both human articular chondrocytes and OUMS-27 cells. The onset and early phase of RVD following hypoosmotic stress in OUMS-27 cells were affected by DIDS and ClC-3 knockdown. Hypoosmotic stimulation caused Ca2+ influx and subsequent release of prostaglandin E2 (PGE2) in OUMS-27 cells, and both of these responses were reduced by DIDS and ClC-3 knockdown. These results strongly suggest that ClC-3 is responsible for ICl,swell and RVD under the hypoosmotic environments. It is likely that ClC-3 is associated with the pathogenesis of cartilage degenerative diseases including osteoarthritis via PGE2 release.


Asunto(s)
Canales de Cloruro/metabolismo , Condrocitos/metabolismo , Dinoprostona/farmacología , Cartílago Articular/citología , Línea Celular , Tamaño de la Célula/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Soluciones
20.
Biochem Biophys Res Commun ; 533(4): 1240-1246, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33069359

RESUMEN

PURPOSE: In the present study, we attempted to explore the role of chloride channel 3 (CLC-3) in colorectal cancer (CRC) and its related mechanism. METHODS: First, the expression level of CLC-3 in CRC tumor tissues and cell lines were measured by RT-qPCR, immunohistochemistry or western blot analysis. CLC-3 expression knockdown in CRC cells was achieved by siRNA transfection. The effect of CLC-3 silence on cell viability, cell cycle, invasion and migration of CRC was estimated by CCK8, flow cytometry based cell cycle assay, and transwell assay, respectively. In order to investigate whether Wnt/ß-catenin signaling was perturbed by CLC-3 knockdown, CLC-3 knockdown cells were treated with pathway activator LiCl, followed by the measurement of the expressions of pathway related genes, cell viability, cell cycle, metastasis ability. RESULTS: The expression of CLC-3 was gradually increased from normal adjacent tissues to CRC tumor tissues, and the increase in tumor tissues was related to TNM stages. CLC-3 was overexpressed in four CRC cell lines (HCT116, SW480, LoVo and SW620), compared with NCM460 cells. CLC-3 knockdown significantly reduced cell proliferation, invasion and migration ability, reflected by declined cell viability, arrested G0/G1 cell cycle, decreased invasion and migration ability. In contrast, the declined cell proliferation, invasion and migration of LoVo and SW620 cells induced by CLC-3 knockdown were reversed by the addition of Wnt/ß-catenin activator LiCl. CONCLUSION: CLC-3 contributed to the CRC development and metastasis through Wnt/ß-catenin signaling pathway. CLC-3 could be proposed as the candidate target for CRC treatment.


Asunto(s)
Canales de Cloruro/fisiología , Neoplasias Colorrectales/metabolismo , Vía de Señalización Wnt , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Canales de Cloruro/antagonistas & inhibidores , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Técnicas de Silenciamiento del Gen , Humanos , Metástasis de la Neoplasia , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA