Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 894
Filtrar
1.
Heliyon ; 10(14): e34586, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114018

RESUMEN

Copper-mediated cell death presents distinct pathways from established apoptosis processes, suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict colon cancer outcomes while examining immune interactions and intercellular signaling. We obtained colon cancer-related human mRNA expression profiles and clinical information from the Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox proportional hazards modeling alongside the least absolute shrinkage and selection operator technique. We elucidated the underlying mechanisms by examining the tumor mutational burden, the extent of immune cell penetration, and intercellular communication dynamics. Based on the model, drugs were predicted and validated with cytological experiments. A 13 lncRNA-cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used to validate the predicted representative mRNAs with high correlation coefficients with copper-induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends in Kaplan-Meier survival estimates. Analysis of immune cell infiltration suggested that survival was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macrophages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 macrophages was significantly associated with better overall survival. Combined single-cell analysis suggested that CCL5-ACKR1, CCL2-ACKR1, and CCL5-CCR1 pathways play key roles in mediating intercellular dialogues among immune constituents within the neoplastic microhabitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the prognosis, unravel the immune mechanisms and cell communication, and improve treatment options, which may provide a new idea for treating colon cancer.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39120719

RESUMEN

Cuproptosis is a recently discovered form of regulated cell death triggered by excess copper (Cu) strongly influenced by the import, export, and intracellular utilization of Cu known as Cu homeostasis. Cinobufagin (CB) is a well-known Chinese medicine for its apoptosis-inducing role; however, its function on cuproptosis is poorly understood. To evaluate the effect of CB on inducing cell death through cuproptosis, we used RNA-seq data of HepG2-treated cells with CB to understand Cuproptosis genes. By using CCK-8 assay, Ross assay, GSH assay, and qRT-PCR, we found that CB could enhance cuproptosis in primary liver cancer cell lines, especially by increasing copper transporters CTR1, CTR2, and LIAS and downregulation of copper efflux transporters ATP7A and ATP7B resulted in increased reactive oxygen species (ROS) production, copper ionophores while reduced intracellular copper chelator glutathione (GSH) synthesis. In conclusion, our findings indicated that CB by increasing cuproptosis-related genes can mediate higher cell cytotoxicity against HepG2 and HUH7 and could provide a new insight into mechanisms of CB as an anti-tumor agent for targeting liver cancer.

3.
Cell Metab ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39111308

RESUMEN

Copper (Cu) is a co-factor for several essential metabolic enzymes. Disruption of Cu homeostasis results in genetic diseases such as Wilson's disease. Here, we show that the zinc transporter 1 (ZnT1), known to export zinc (Zn) out of the cell, also mediates Cu2+ entry into cells and is required for Cu2+-induced cell death, cuproptosis. Structural analysis and functional characterization indicate that Cu2+ and Zn2+ share the same primary binding site, allowing Zn2+ to compete for Cu2+ uptake. Among ZnT members, ZnT1 harbors a unique inter-subunit disulfide bond that stabilizes the outward-open conformations of both protomers to facilitate efficient Cu2+ transport. Specific knockout of the ZnT1 gene in the intestinal epithelium caused the loss of Lgr5+ stem cells due to Cu deficiency. ZnT1, therefore, functions as a dual Zn2+ and Cu2+ transporter and potentially serves as a target for using Zn2+ in the treatment of Wilson's disease caused by Cu overload.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39115044

RESUMEN

Cutaneous melanoma is the most lethal of all skin tumors. Recently, cuproptosis, a novel form of cell death linked to oxidative phosphorylation, has emerged as an important factor. However, the precise role of cuproptosis in melanoma remains unclear. Our research explored the potential links between cuproptosis-related genes, prognosis, immune microenvironments, and melanoma treatments. Significantly, cuproptosis regulators showed remarkable differences between melanoma and normal tissues, establishing their relevance to melanoma. The newly developed cuproptosis-related gene signature (CGS) demonstrated a robust ability to predict overall survival (OS) in melanoma. We constructed a novel nomogram that combined clinical features with CGS to improve predictive accuracy. In addition, the study revealed correlations between CGS and immune cell populations, including CD8+T cells, Tfh cells, B cells, and myeloid-derived suppressor cells. Within the CGS, Peptidylprolyl isomerase C (PPIC) emerged as the most strongly associated with poor prognosis and drug resistance in melanoma. PPIC was identified as a promoter of melanoma progression, enhancing cell invasiveness while concurrently suppressing CD8+T cell activation. This comprehensive study not only elucidated the intricate connections between CGS, melanoma prognosis, immune microenvironment, and drug resistance but also provided compelling evidence supporting PPIC as a promising biomarker for predicting OS in melanoma treatment.

5.
BMC Cancer ; 24(1): 958, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107713

RESUMEN

BACKGROUND: Muscle-invasive bladder cancer (MIBC) is a prevalent and aggressive malignancy. Ferroptosis and cuproptosis are recently discovered forms of programmed cell death (PCD) that have attracted much attention. However, their interactions and impacts on MIBC overall survival (OS) and treatment outcomes remain unclear. METHODS: Data from the TCGA-BLCA project (as the training set), cBioPortal database, and GEO datasets (GSE13507 and GSE32894, as the test sets) were utilized to identify hub ferroptosis/cuproptosis-related genes (FRGs and CRGs) and develop a prognostic signature. Differential expression analysis (DEA) was conducted, followed by univariate and multivariate Cox's regression analyses and multiple machine learning (ML) techniques to select genetic features. The performance of the ferroptosis/cuproptosis-related signature was evaluated using Kaplan-Meier (K-M) survival analysis and receiver-operating characteristics (ROC) curves. Mutational and tumour immune microenvironment landscapes were also explored. Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) experiments confirmed the expression patterns of the hub genes, and functional assays assessed the effects of SCD knockdown on cell viability, proliferation, and migration. RESULTS: DEA revealed dysregulated FRGs and CRGs in the TCGA MIBC cohort. SCD, DDR2, and MT1A were identified as hub genes. A prognostic signature based on the sum of the weighted expression of these genes demonstrated strong predictive efficacy in the training and test sets. Nomogram incorporating this signature accurately predicted 1-, 3-, and 5-year survival probabilities in the TCGA cohort and GSE13507 dataset. Copy number variation (CNV) and tumour immune microenvironment analysis revealed that high risk score level groups were associated with immunosuppression and lower tumour purity. The associations of risk scores with immunotherapy and chemical drugs were also explored, indicating their potential for guiding treatment for MIBC patients. The dysregulated expression patterns of three hub genes were validated by RT-qPCR experiments. CONCLUSIONS: Targeting hub FRGs and CRGs could be a promising therapeutic approach for MIBC. Our prognostic model offers a new framework for MIBC subtyping and can inform personalized therapeutic strategies.


Asunto(s)
Ferroptosis , Mutación , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/mortalidad , Ferroptosis/genética , Pronóstico , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Masculino , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Femenino , Perfilación de la Expresión Génica , Nomogramas , Estimación de Kaplan-Meier , Línea Celular Tumoral
6.
Heliyon ; 10(14): e34011, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100456

RESUMEN

Cancer is widely regarded as a leading cause of death in humans, with colon adenocarcinoma (COAD) ranking among the most prevalent types. Cuproptosis is a novel form of cell death mediated by protein lipoylation. Cuproptosis-related genes (CRGs) participate in tumourigenesis and development. Their role in pan-cancer and COAD require further investigation. This study comprehensively evaluated the relationship among CRGs, pan-cancer, and COAD. Our research revealed the differential expression of CRGs and the cuproptosis potential index (CPI) between normal and tumour tissues, and further explored the correlation of CRGs or CPI with prognosis, immune infiltration, tumor mutant burden(TMB), microsatellite instability (MSI), and drug sensitivity in pan-cancer. Gene set enrichment analysis (GSEA) revealed that oxidative phosphorylation and fatty acid metabolism pathways were significantly enriched in the high CPI group of most tumours. FDX1 and CDKN2A were chosen for further exploration, and we found an independent association between FDX1 and CDKN2A and prognosis, immune infiltration, TMB, and MSI in pan-cancer. Furthermore, a prognostic risk model based on the association between CRGs and COAD was built, and the correlations between the risk score and prognosis, immune-related characteristics, and drug sensitivity were analysed. COAD was then divided into three subtypes using cluster analysis, and the differences among the subtypes in prognosis, CPI, immune-related characteristics, and drug sensitivity were determined. Due to the level of LIPT1 was notably positive related with the risk score, the cytological identification was carried out to identify the association of LIPT1 with proliferation and migration of colon cancer cells. In summary, CRGs can be used as potential prognostic biomarkers to predict immune infiltration levels in patients with pan-cancer. In addition, the risk model could more accurately predict the prognosis and immune infiltration levels of COAD and better guide the direction of clinical medication. Thus, FDX1, CDKN2A, and LIPT1 may serve as prospective new targets for cancer therapy.

7.
Sci Rep ; 14(1): 19068, 2024 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154101

RESUMEN

Herein we have reported a fluorescent probe (MB-M) based on MB derivative for Cu2+ ions detection. The probe was well characterized by 1H NMR, 13C NMR and HR-MS spectrum. Probe MB-M showed naked-eyes recognition to Cu2+ as color change from colorless to indigo. The probe exhibited promising features such as high fluorescence and UV-vis selectivity, fast response (5 mint), workable at pH 2-7, and low limit of detection (LOD = 0.33 µM). Probe MB-M was also used for Cu2+ ions imaging in HepG-2 cells and detection in daily life (Test Strip and lake water). Moreover, non-covalent interaction (NCI) and quantum theory of atoms in molecules (QTAIM) analysis were used to study the interaction between MB-M and Cu2+ ions. By examining the electronic characteristics of the complex using natural bond orbital (NBO), electron density difference (EDD), and frontier molecular orbital (FMO) analysis, the sensitivity of MB-M towards Cu2+ ions were investigated. The results illustrated that the interactions between MB-M and Cu2+ ions involved chemisorption.


Asunto(s)
Cobre , Colorantes Fluorescentes , Cobre/análisis , Cobre/química , Colorantes Fluorescentes/química , Humanos , Células Hep G2 , Imagen Óptica/métodos , Iones , Espectrometría de Fluorescencia/métodos , Límite de Detección
8.
J Cell Mol Med ; 28(15): e18574, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39087591

RESUMEN

Osteoarthritis (OA) is a widespread inflammatory joint disease with significant global disability burden. Cuproptosis, a newly identified mode of cell death, has emerged as a crucial factor in various pathological conditions, including OA. In this context, our study aims to investigate the intrinsic relationship between cuproptosis-related genes (CRGs) and OA, and assess their potential as biomarkers for OA diagnosis and treatment. Datasets from the GEO databases were analysed the differential expression of CRGs, leading to the identification of 10 key CRGs (CDKN2A, DLD, FDX1, GLS, LIAS, LIPT1, MTF1, PDHA1, DLAT and PDHB). A logistic regression analysis and calibration curves were used to show excellent diagnostic accuracy. Consensus clustering revealed two CRG patterns, with Cluster 1 indicating a closer association with OA progression. RT-PCR confirmed a significant increase in the expression levels of these nine key genes in IL-1ß-induced C28/i2 cells, and the expression of CDKN2A and FDX1 were also elevated in conditioned monocytes, while the expression of GLS and MTF1 were significantly decreased. In vitro experiments demonstrated that the expression levels of these 7/10 CRGs were significantly increased in chondrocytes induced by IL-1ß, and upon stimulation with cuproptosis inducers, chondrocyte apoptosis was exacerbated, accompanied by an increase in the expression of cuproptosis-related proteins. These further substantiated our research findings and indicated that the nine selected cuproptosis genes have high potential for application in the diagnosis of OA.


Asunto(s)
Condrocitos , Osteoartritis , Humanos , Osteoartritis/genética , Factores de Riesgo , Condrocitos/metabolismo , Condrocitos/patología , Biomarcadores/metabolismo , Interleucina-1beta/genética , Regulación de la Expresión Génica , Monocitos/metabolismo , Perfilación de la Expresión Génica
9.
Biomaterials ; 312: 122723, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39121732

RESUMEN

The challenges generated by insufficient T cell activation and infiltration have constrained the application of immunotherapy. Making matters worse, the complex tumor microenvironment (TME), resistance to apoptosis collectively poses obstacles for cancer treatment. The carrier-free small molecular self-assembly strategy is a current research hotspot to overcome these challenges. This strategy can transform multiple functional agents into sustain-released hydrogel without the addition of any excipients. Herein, a coordination and hydrogen bond mediated tricomponent hydrogel (Cel hydrogel) composed of glycyrrhizic acid (GA), copper ions (Cu2+) and celastrol (Cel) was initially constructed. The hydrogel can regulate TME by chemo-dynamic therapy (CDT), which increases reactive oxygen species (ROS) in conjunction with GA and Cel, synergistically expediting cellular apoptosis. What's more, copper induced cuproptosis also contributes to the anti-tumor effect. In terms of regulating immunity, ROS generated by Cel hydrogel can polarize tumor-associated macrophages (TAMs) into M1-TAMs, Cel can induce T cell proliferation as well as activate DC mediated antigen presentation, which subsequently induce T cell proliferation, elevate T cell infiltration and enhance the specific killing of tumor cells, along with the upregulation of PD-L1 expression. Upon co-administration with aPD-L1, this synergy mitigated both primary and metastasis tumors, showing promising clinical translational value.

10.
J Cancer ; 15(15): 5028-5045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132167

RESUMEN

Background: Currently, there is few literature comprehensively analyzing landscape of cuproptosis-related genes (CRGs) in liver hepatocellular carcinoma (LIHC) with multiple omics approaches. Aims: Using comprehensive analysis, we aim to find out how CRGs works on LIHC. Method: With data from The Cancer Genome Atlas (TCGA) database, we constructed a prognostic prediction model for CGRs using LASSO regression analysis and performed immune infiltration analysis using the same dataset. To validate findings, we utilized RNA expression data from the International Cancer Genome Consortium (ICGC). Furthermore, we analyzed the enrichment and features of CRGs in epithelial cells using single-cell RNA sequencing (scRNA-seq) data. To validate the reliability of findings, we performed several experiments including RT-PCR, cloning formation assay, scratch assay, and Transwell assay. Result: We have constructed a high-precision risk scoring model composed of CRGs for predicting prognosis in TCGA-LIHC. Reliability of the risk prognosis model was confirmed through Kaplan-Meier curve analysis, time-dependent ROC analysis, and multivariate regression analysis. Furthermore, we found knocking down PDSS1 increased sensitivity of LIHC cells to copper ions, and both proliferation and migration abilities were significantly reduced. Finally, we comprehensively characterized the features of CRGs in LIHC through scRNA-seq. Conclusion: In this study, we introduce PDSS1 as a novel CRG in HCC. Utilizing scRNA-seq, we provide a comprehensive landscape of cuproptosis across various cell subtypes within the HCC tumor microenvironment. Furthermore, we detailed the characteristics of high PDSS1-expressing tumor cells, including their distinctive transcription factors, metabolic profiles, and interactions with different subtypes within the tumor microenvironment. This work not only elucidated the role of PDSS1 in HCC but also enhanced our understanding of cuproptosis dynamics during tumor progression.

11.
Adv Healthc Mater ; : e2401902, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136059

RESUMEN

Radio-immunotherapy driven by radiation-induced immunogenic cell death (ICD) is emerging as a potential opportunity to address conventional radiotherapy (RT) that is only applicable to localized tumor treatment. However, the effective activation of ICD during RT is severely limited by radiation dose, weak tumor immunogenicity, and radio-resistance caused by tumor microenvironment (TME). Herein, a novel bimetallic hybrid nanoscale coordination nanostimulator is first proposed by phosphate backbone doped with copper ions (Cu2+) and hafnium ions (Hf4+), and then modified with polyvinylpyrrolidone (PVP). The PVPylated Cu/Hf-doped phosphate nanostimulator (denoted as CHP) exhibits effective reprogramming of TME, including depletion of tumor endogenous glutathione (GSH), relief of tumor hypoxia and repolarization of M2 phenotypic macrophages, thus achieving tumor radiosensitization at low X-ray irradiation dose, gradually accumulation of tumor endogenous reactive oxygen species (ROS) and augmenting cuproptosis. In addition, cuproptosis can amplify RT-induced anti-tumor immunity through ICD activation, ultimately resulting in a robust anti-tumor immune response and long-term immunity, evidenced by distant tumor growth inhibition of 4T1-tumor-bearing models. More interestingly, it is discovered that CHP-mediated cuproptosis can be intensifiable during X-ray irradiation. Taken together, this work presents a novel radio-cuproptosis-immunotherapy cascade strategy, offering a new perspective for innovation in the treatment field of breast cancer.

12.
Curr Top Med Chem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39136507

RESUMEN

Cancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-- containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.

13.
PeerJ ; 12: e17859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148682

RESUMEN

Background: CeRNA axis is an important way to regulate the occurrence and development of Nasopharyngeal carcinoma (NPC). Although the research on inducing cuproptosis of tumor cells is in the early stage of clinical practice, its mechanism of action is still of great significance for tumor treatment, including NPC. However, the regulation mechanism of cuproptosis in NPC by ceRNA network remains unclear. Methods: The ceRNA network related to the survival of nasopharyngeal carcinoma related genes was constructed by bioinformatics. Dual-luciferase reporter assay and other experiments were used to prove the conclusion. Results: Our findings indicate that the AC008083.2/miR-142-3p axis drives STRN3 to promote the malignant progression of NPC. By performing enrichment analysis and phenotypic assays, we demonstrated that the changes in the expressions of AC008083.2/miR-142-3p/NPC can affect the proliferation of NPC. Mechanistically, luciferase reporter gene assays suggested that AC008083.2 acts as a ceRNA of miR-142-3p to regulate the content of STRN3. Furthermore, the regulations of STRN3 and the malignant progression of NPC by AC008083.2 depends on miR-142-3p to some extent. Conclusions: Our study reveals an innovative ceRNA regulatory network in NPC, which can be considered a new potential target for diagnosing and treating NPC.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , ARN Endógeno Competitivo , Animales , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Progresión de la Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , ARN Endógeno Competitivo/genética , ARN Endógeno Competitivo/metabolismo
14.
Gene ; 930: 148861, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153705

RESUMEN

BACKGROUND: By identifying molecular biological markers linked to cuproptosis in diabetic retinopathy (DR), new pathobiological pathways and more accessible diagnostic markers can be developed. METHODS: The datasets related to DR were acquired from the Gene Expression Omnibus database, while genes associated with cuproptosis were sourced from previously published compilations. Consensus clustering was conducted to delineate distinct DR subclasses. Feature genes were identified utilizing weighted correlation network analysis (WGCNA). Additionally, two machine-learning algorithms were employed to refine the selection of feature genes. Finally, we conducted preliminary validation experiments to ascertain the involvement of cuproptosis in DR development and the transcriptional regulation of critical genes using both the streptozotocin-induced diabetic mouse model and the high glucose-induced BV2 model. RESULTS: In the STZ-induced diabetic mouse retinas, a decrease in the expression of cuproptosis signature proteins (FDX1, DLAT, and NDUFS8) suggested the occurrence of cuproptosis in DR. Subsequently, the expression of eight cuproptosis differential genes was validated through the STZ-induced diabetes and oxygen-induced retinopathy (OIR) models, with the key gene SLC31A1 showing upregulation in both models and dataset species. Further analyses, including weighted gene co-expression network analysis, GSVA, and immune infiltration analysis, indicated a close correlation between cuproptosis and microglia function. Additionally, validation in an in vitro model of microglia indicated the occurrence of cuproptosis in microglia under high glucose conditions, alongside abnormal expression of STAT1 with SLC31A1. CONCLUSION: Our findings suggest that STAT1/SLC31A1 may pave the way for a deeper comprehension of the mechanistic basis of DR and offer potential therapeutic avenues.

15.
J Hematol Oncol ; 17(1): 68, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152464

RESUMEN

Cuproptosis is a newly identified form of cell death induced by excessive copper (Cu) accumulation within cells. Mechanistically, cuproptosis results from Cu-induced aggregation of dihydrolipoamide S-acetyltransferase, correlated with the mitochondrial tricarboxylic acid cycle and the loss of iron-sulfur cluster proteins, ultimately resulting in proteotoxic stress and triggering cell death. Recently, cuproptosis has garnered significant interest in tumor research due to its potential as a crucial therapeutic strategy against cancer. In this review, we summarized the cellular and molecular mechanisms of cuproptosis and its relationship with other types of cell death. Additionally, we reviewed the current drugs or strategies available to induce cuproptosis in tumor cells, including Cu ionophores, small compounds, and nanomedicine. Furthermore, we targeted cell metabolism and specific regulatory genes in cancer therapy to enhance tumor sensitivity to cuproptosis. Finally, we discussed the feasibility of targeting cuproptosis to overcome tumor chemotherapy and immunotherapy resistance and suggested future research directions. This study suggested that targeting cuproptosis could open new avenues for developing tumor therapy.


Asunto(s)
Cobre , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Cobre/metabolismo , Cobre/uso terapéutico , Animales , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos
16.
Biomed Pharmacother ; 178: 117293, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142251

RESUMEN

Breast cancer is one of the most prevalent malignancies among women. Enhancing the prognosis is an effective approach to enhance the survival rate of breast cancer. Cuproptosis, a copper-dependent programmed cell death process, has been associated with patient prognosis. Inducing cuproptosis is a promising approach for therapy. However, there is currently no anti-breast cancer drug that induces cuproptosis. In this study, we repositioned the clinical drug fluphenazine as a potential agent for breast cancer treatment by inducing cuproptosis. Firstly, we utilized the Cancer Genome Atlas (TCGA) database and Connectivity Map (CMap) database to identify 22 potential compounds with anti-breast cancer activity through inducing cuproptosis. Subsequently, our findings demonstrated that fluphenazine effectively suppressed the viability of MCF-7 cells. Fluphenazine also significantly inhibited the viability of triple negative breast cancer cells MDA-MB-453 and MDA-MB-231. Furthermore, our study revealed that fluphenazine significantly down-regulated the expression of potential prognostic biomarkers associated with cuproptosis, increased copper ion levels, and reduced intracellular pyruvate accumulation. Additionally, it up-regulated the expression of FDX1 at both the mRNA and protein levels, which has been reported to play a crucial role in the induction of cuproptosis. These findings suggest that fluphenazine has the potential to be used as an anti-breast cancer drug by inducing cuproptosis. Therefore, this research provides an insight for the development of novel cuproptosis-dependent anti-cancer agents.

17.
J Hazard Mater ; 477: 135391, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106724

RESUMEN

3-nitropropanoic acid is a potent oxidative stress inducer that is conventionally regarded as a regulator of follicular atresia by regulating granulosa cells (GCs) death through the apoptosis pathway. There has been no research investigating the impact of copper metal overload induced Cuproptosis in ovarian GCs as a factor contributing to hindered follicular development.To elucidate whether 3-NP-induced oxidative stress plays a contributory role in promoting Cuproptosis, and discuss the role of Cuproptosis in the development of ovarian follicles.We conducted an analysis of cuproptosis occurrence in murine GCs and C57BL/6 J mice under the influence of 3-NP and 3-NP with added exogenous copper.The results revealed that 3-NP serving as a robust facilitator of exogenous copper uptake by upregulating the expression of copper transporter 1 (CTR1). In turn, culminated in the accumulation of intracellular copper within mouse granulosa cells (mGCs). Furthermore, 3-NP promoted mitochondrial permeability transition pore opening and concurrently reduced the stability of lipoic acid proteins. These actions collectively induced the oligomerization of Dihydrolipoamide S-Acetyltransferase (DLAT), ultimately leading to cuproptosis in GCs and consequent follicular atresia. Heavy metal copper and fungal decomposition product 3-NP, induce ovarian atresia via cuproptosis, modulating the reproductive performance of female animals.


Asunto(s)
Cobre , Atresia Folicular , Células de la Granulosa , Ratones Endogámicos C57BL , Animales , Femenino , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Atresia Folicular/efectos de los fármacos , Cobre/toxicidad , Transportador de Cobre 1/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos , Muerte Celular/efectos de los fármacos
18.
Int Immunopharmacol ; 140: 112912, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39133954

RESUMEN

OBJECTIVE: Lung adenocarcinoma (LA), the most prevalent type of lung cancer, is associated with a high mortality rate, especially among patients with cancer previously infected with coronavirus disease (COVID-19). Therefore, this study aimed to explore the mechanisms by which COVID-19 exacerbates LA progression in a clinical setting. METHODS: The experiment involved collecting serum samples from three groups: a healthy control group (Con, n = 20), a lung adenocarcinoma group (LA, n = 30), and a group of lung adenocarcinoma patients with first-time COVID-19 infection (C-LA, n = 58). Metabolites were analyzed using liquid chromatography-mass spectrometry, and differentially expressed metabolites were identified through bioinformatics analysis. The concentrations of glutathione (GSH), reactive oxygen species (ROS), and copper ions (Cu2+) in the serum of patients in the Con and C-LA groups were measured. Mitochondrial morphological changes in monocytes and lymphocytes were observed using electron microscopy. RESULTS: Metabolomic analysis revealed 142 distinct metabolites, among which glutamine (Gln) expression was significantly decreased in the C-LA group. Compared to the Con group, the C-LA group showed a significant decrease in GSH and a notable increase in ROS and Cu2+. Further research revealed that the mitochondria of monocytes and lymphocytes in the C-LA group exhibited corresponding alterations indicative of cuproptosis. CONCLUSIONS: SARS-CoV-2 infection may reduce Gln levels, leading to reduced GSH levels, copper overload, and increased death of immune cells, which may further exacerbate rapid tumor development. Thus, glutamine regulation plays an important role in LA progression in patients with COVID-19 and represents a potential therapeutic target.

19.
Cell Commun Signal ; 22(1): 379, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068453

RESUMEN

Copper is an important metal micronutrient, required for the balanced growth and normal physiological functions of human organism. Copper-related toxicity and dysbalanced metabolism were associated with the disruption of intracellular respiration and the development of various diseases, including cancer. Notably, copper-induced cell death was defined as cuproptosis which was also observed in malignant cells, representing an attractive anti-cancer instrument. Excess of intracellular copper leads to the aggregation of lipoylation proteins and toxic stress, ultimately resulting in the activation of cell death. Differential expression of cuproptosis-related genes was detected in normal and malignant tissues. Cuproptosis-related genes were also linked to the regulation of oxidative stress, immune cell responses, and composition of tumor microenvironment. Activation of cuproptosis was associated with increased expression of redox-metabolism-regulating genes, such as ferredoxin 1 (FDX1), lipoic acid synthetase (LIAS), lipoyltransferase 1 (LIPT1), dihydrolipoamide dehydrogenase (DLD), drolipoamide S-acetyltransferase (DLAT), pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1), and pyruvate dehydrogenase E1 subunit beta (PDHB)). Accordingly, copper-activated network was suggested as an attractive target in cancer therapy. Mechanisms of cuproptosis and regulation of cuproptosis-related genes in different cancers and tumor microenvironment are discussed in this study. The analysis of current findings indicates that therapeutic regulation of copper signaling, and activation of cuproptosis-related targets may provide an effective tool for the improvement of immunotherapy regimens.


Asunto(s)
Muerte Celular , Cobre , Inmunoterapia , Oxidación-Reducción , Humanos , Cobre/metabolismo , Neoplasias Torácicas/patología , Neoplasias Torácicas/genética , Animales
20.
Front Pharmacol ; 15: 1388038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076585

RESUMEN

Metastatic hepatocellular carcinoma (HC) is a serious health concern. The stemness of cancer stem cells (CSCs) is a key driver for HC tumorigenesis, apoptotic resistance, and metastasis, and functional mitochondria are critical for its maintenance. Cuproptosis is Cu-dependent non-apoptotic pathway (mitochondrial dysfunction) via inactivating mitochondrial enzymes (pyruvate dehydrogenase "PDH" and succinate dehydrogenase "SDH"). To effectively treat metastatic HC, it is necessary to induce selective cuproptosis (for halting cancer stemness genes) with selective oxidative imbalance (for increasing cell susceptibility to cuproptosis and inducing non-CSCs death). Herein, two types of Cu oxide nanoparticles (Cu4O3 "C(I + II)" NPs and Cu2O "C(I)" NPs) were used in combination with diethyldithiocarbamate (DD, an aldehyde dehydrogenase "ALDH" inhibitor) for comparative anti-HC investigation. DC(I + II) NPs exhibited higher cytotoxicity, mitochondrial membrane potential, and anti-migration impact than DC(I) NPs in the treated human HC cells (HepG2 and/or Huh7). Moreover, DC(I + II) NPs were more effective than DC(I) NPs in the treatment of HC mouse groups. This was mediated via higher selective accumulation of DC(I + II) NPs in only tumor tissues and oxidant activity, causing stronger selective inhibition of mitochondrial enzymes (PDH, SDH, and ALDH2) than DC(I)NPs. This effect resulted in more suppression of tumor and metastasis markers as well as stemness gene expressions in DC(I + II) NPs-treated HC mice. In addition, both nanocomplexes normalized liver function and hematological parameters. The computational analysis found that DC(I + II) showed higher binding affinity to most of the tested enzymes. Accordingly, DC(I + II) NPs represent a highly effective therapeutic formulation compared to DC(I) NPs for metastatic HC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA