Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chem Asian J ; 19(15): e202400138, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38733617

RESUMEN

The aminotroponiminate (ATI) ligand stabilized germylene cation [(i-Bu)2ATIGe][B(C6F5)4] (2) is found to be an efficient low-valent main-group catalyst for the cyanosilylation of aldehydes and ketones (ATI=aminotroponiminate). It was synthesized by reacting [(i-Bu)2ATIGeCl] (1) with Na[B(C6F5)4]. The catalytic cyanosilylation of diverse aliphatic and aromatic carbonyl compounds (aldehydes and ketones) using 0.075-0.75 mol% of compound 2 was completed within 5-45 min. The catalytic efficiency seen with aliphatic aldehydes was around 15,800 h-1, making compound 2 a capable low-valent main-group catalyst for the aldehyde and ketone cyanosilylation reactions. Further, DFT calculations reveal a pronounced charge localization at the germanium atom of compound 2, leading to its superior catalytic performance.

2.
Small ; 20(9): e2305999, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37840400

RESUMEN

An unprecedented correlation between the catalytic activity of a Zr-based UiO-type metal-organic framework (MOF) and its degree of interpenetration (DOI) is reported. The DOI of an MOF is hard to control owing to the high-energy penalty required to construct a partially interpenetrated structure. Surprisingly, strong interactions between building blocks (inter-ligand hydrogen bonding) facilitate the formation of partially interpenetrated structures under carefully regulated synthesis conditions. Moreover, catalytic conversion rates for cyanosilylation and Knoevenagel condensation reactions are found to be proportional to the DOI of the MOF. Among MOFs with DOIs in the 0-100% range, that with a DOI of 87% is the most catalytically active. Framework interpenetration is known to lower catalytic performance by impeding reactant diffusion. A higher effective reactant concentration due to tight inclusion in the interpenetrated region is possibly responsible for this inverted result.

3.
Adv Sci (Weinh) ; 11(2): e2305833, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973555

RESUMEN

The motivation for making heterometallic compounds stemmed from their emergent synergistic properties and enhanced capabilities for applications. However, the atomically precisely controlled synthesis of heterometallic compounds remains a daunting challenge of the complications that arise when applying several metals and linkers. Herein, a stepwise and controlled method is reported for the accurate addition of second and third metals to homometallic aluminum macrocycles based on the synergistic coordination and hard-soft acid-base theory. These heterometallic compounds showed a good Lewis acid catalytic effect, and the addition of hetero-metals significantly improved the catalytic effect and rate, among that the conversion rate of compound AlOC-133 reached 99.9% within half an hour. This method combines both the independent controllability of stepwise assembly with the universality of one-step methods. Based on the large family of clusters, the establishment of this method paves the way for the controllable and customized molecular-level synthesis of heterometallic materials and creates materials customized for preferential application.

4.
Molecules ; 28(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37836754

RESUMEN

Three new products, [Cu2(µ3-dppa)(2,2'-bipy)2(H2O)]n·2nH2O (1), [Co4(µ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(µ6-dppa)(µ-4,4'-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2'-bipyridine (2,2'-bipy),1,10-phenanthroline (phen), and 4,4'-bipyridine (4,4'-bipy). Products 1-3 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal-organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C.

5.
ACS Appl Mater Interfaces ; 15(14): 17957-17968, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010448

RESUMEN

The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.

6.
Angew Chem Int Ed Engl ; 61(37): e202208443, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35880544

RESUMEN

Diastereo- and enantioselective construction of vicinal stereocenters from easily available starting materials is a challenging task. Here, we report that a bifunctional catalyst prepared from dibutylmagnesium and a pipecolinol-derived tetradentate ligand can enable an asymmetric cyanosilylation of 1,3-diketones to forge a pair of neighboring and acyclic tetrasubstituted carbons. The high stereoselectivity results from the rigid conformation of the diketone in the catalyst pocket, where the Lewis acidic magnesium center, together with the free hydroxyl group as a putative hydrogen bond donor, bind with both carbonyls. Consequently, stereochemically well-defined cyanohydrin silyl ethers with a diverse collection of substituents were prepared. Their rapid derivatization to molecules of higher complexity, such as heterocycles, triols, and fused rings, were also demonstrated.

7.
Molecules ; 26(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669746

RESUMEN

The new coordination polymers (CPs) [Zn(µ-1κO1:1κO2-L)(H2O)2]n·n(H2O) (1) and [Cd(µ4-1κO1O2:2κN:3,4κO3-L)(H2O)]n·n(H2O) (2) are reported, being prepared by the solvothermal reactions of 5-{(pyren-4-ylmethyl)amino}isophthalic acid (H2L) with Zn(NO3)2.6H2O or Cd(NO3)2.4H2O, respectively. They were synthesized in a basic ethanolic medium or a DMF:H2O mixture, respectively. These compounds were characterized by single-crystal X-ray diffraction, FTIR spectroscopy, thermogravimetric and elemental analysis. The single-crystal X-ray diffraction analysis revealed that compound 1 is a one dimensional linear coordination polymer, whereas 2 presents a two dimensional network. In both compounds, the coordinating ligand (L2-) is twisted due to the rotation of the pyrene ring around the CH2-NH bond. In compound 1, the Zn(II) metal ion has a tetrahedral geometry, whereas, in 2, the dinuclear [Cd2(COO)2] moiety acts as a secondary building unit and the Cd(II) ion possesses a distorted octahedral geometry. Recently, several CPs have been explored for the cyanosilylation reaction under conventional conditions, but microwave-assisted cyanosilylation of aldehydes catalyzed by CPs has not yet been well studied. Thus, we have tested the solvent-free microwave-assisted cyanosilylation reactions of different aldehydes, with trimethylsilyl cyanide, using our synthesized compounds, which behave as highly active heterogeneous catalysts. The coordination polymer 1 is more effective than 2, conceivably due to the higher Lewis acidity of the Zn(II) than the Cd(II) center and to a higher accessibility of the metal centers in the former framework. We have also checked the heterogeneity and recyclability of these coordination polymers, showing that they remain active at least after four recyclings.


Asunto(s)
Aldehídos/química , Cianuros/química , Microondas , Polímeros/química , Pirenos/química , Compuestos de Trimetilsililo/química , Catálisis , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Conformación Molecular , Polímeros/síntesis química , Solventes , Termogravimetría
8.
Chem Asian J ; 16(7): 705-719, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587291

RESUMEN

An overview of the development of compounds with heavier low-valent group 14 elements (known as tetrylenes) as single component catalyst for organic transformation has been provided. Compounds with heavier group 14 elements possess stereochemically active lone pairs and energetically accessible π-antibonding orbitals, thereby resembling the electronic configuration of transition-metal compounds. Such compounds with low-valent group 14 elements has been known for small molecule activation since Power's report of dihydrogen activation by a digermyne, but their utilization in catalysis remained as a "Holy Grail" in main group chemistry. In recent years, numerous methodologies have been discovered epitomizing the use of Si(II), Ge(II) and Sn(II) compounds as single site catalysts for hydroboration of aldehydes, ketones, pyridines, cyanosilylation of aldehydes and ketones, N-formylations aromatic amines, dehydrocoupling reactions. This mini-review highlights these significant developments with an emphasis on the mechanistic investigation.

9.
Front Chem ; 8: 598961, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330390

RESUMEN

Lanthanide (Ln)-containing polyoxometalates (POMs) have attracted particular attention owing to their structural diversity and potential applications in luminescence, magnetism, and catalysis. Herein three types of Ln-containing tungstotellurates(VI) (Ln = Dy3+, Ho3+, Er3+, Tm3+, Yb3+, and Lu3+), dimeric (DMAH) n [H22-n {Ln(H2O)3[TeW17O61]}2]·mH2O (abbreviated as {Ln2Te2W34}; DMAH+ = dimethylammonium), mono-substituted (DMAH)7Na2{H2Ln(H2O)4[TeW17O61]}·mH2O (abbreviated as {LnTeW17}), and three-dimensional (3D) inorganic frameworks (DMAH) n {H3-n Ln(H2O)4[TeW6O24]}·mH2O (abbreviated as {LnTeW6}), have been synthesized by using simple metal salts and characterized by single-crystal X-ray diffraction and other routine techniques. Interestingly, the assembly of these POMs is pH dependent. Using the same starting materials, {Ln2Te2W34} were obtained at pH 1.7, where two Dawson-like monovacant [TeW17O61]14- are linked by two Ln3+ ions; mono-substituted Dawson-like {LnTeW17} were isolated at pH 1.9, and 3D inorganic framework {LnTeW6} based on Anderson-type [TeW6O24]6- were formed at pH 2.3. It was also found that the assembly of Ln-containing POMs depends on the type of Ln3+ ions. The three types of POMs can be prepared by using Ln3+ ions with a relatively smaller ionic radius, such as Tb3+-Lu3+, while the use of Ln3+ ions (La3+-Eu3+) results in the formation of precipitation or {TeW18O62} clusters. Furthermore, three {LnTeW6} (Ln = Tb3+, Er3+, Lu3+) were used as Lewis acid catalysts for the cyanosilylation of benzaldehydes, and their catalytic activity decreases with the decrease of Ln3+ ionic radius, giving the order: {TbTeW6} > {ErTeW6} > {LuTeW6}. Notably, {TbTeW6} is stable to leaching and can be reused for five cycles without a significant loss of its activity.

10.
Small ; 16(40): e2002698, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32893486

RESUMEN

A combined photothermal-catalytic system that contains a single active element, without using different entities for separate roles (catalytic vs photothermal), is designed here for efficient catalytic reactions. Herein, ultrathin (sub-6 nm) rectangular-like KNdF4 nanoplates consisting of 3-4 unit cell layers are prepared where the Nd3+ ions act as a Lewis acid catalyst. In addition, the nanoplates undergo light-to-heat conversion when irradiated with NIR light due to cross-relaxation and nonradiative relaxation processes from excited Nd3+ . The cyanosilylation of a series of ketones is performed using the nano-hotplate catalysts to give near quantitative yields of the cyanohydrin trimethylsilyl ethers. This is because of the high surface area-to-volume ratio of the thin nanoplates that provides a large number of surface Nd3+ catalytic sites for reaction. The reaction kinetics are enhanced by the photothermal effect, leading to the observed > 10-fold increase in product yields.

11.
Curr Org Synth ; 16(2): 276-282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31975676

RESUMEN

AIM AND OBJECTIVE: The hydrosilylation reaction of carbonyl compounds has emerged as a powerful method in organic synthesis. The catalytic hydrosilylation of ketones is a valuable transformation because it generates protected cyanosilylation reaction of carbonyl compounds is an efficient procedure for the synthesis of silylated cyanohydrins, which are readily converted into useful functionalized compounds, such as cyanohydrins, α-hydroxy acids, ß-amino alcohols and other biologically active compounds. MATERIALS AND METHODS: A facile, economic and efficient method has been developed for the hydrosilylation and cyanosilylation of ketones using metal borohydrides. A series of silylated ethers and silylated cyanohydrins can be isolated via direct distillation. RESULTS: The catalytic properties of a range of metal borohydrides in the hydrosilylation reaction of acetophenone with diphenylsilane were investigated. The relative catalytic activity of the borohydride catalyst studied was as follows: (CH3)4NBH4> (PhCH2)(CH3)3NBH4> (CH2CH3)4NBH4> (CH3CH2CH2CH3)4NBH4> NaBH4> KBH4> LiBH4. The cyanosilylation of acetophenone using trimethylsilyl cyanide (TMSCN) in the presence of NaBH4 occurred under similar reaction conditions. An excellent reaction rate and high conversion were obtained. CONCLUSION: The metal borohydride-catalyzed hydrosilylation alcohols in one step. The and cyanosilylation of ketones could be carried out smoothly under mild reaction conditions. Among the metal borohydrides studied, an excellent reaction rate and high conversion were obtained using NaBH4, NaBH (CH2CH3)3 or (alkyl)4 NBH4 as the reaction catalyst.

12.
Carbohydr Polym ; 199: 365-374, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143140

RESUMEN

An efficient and mild procedure was developed for the preparation of three chitosan-supported ureas containing electron-withdrawing groups. These catalysts were characterized and employed as organocatalysts in different transformations, including the enantioselective cyanosilylation of α-ketoesters and aldehydes, the asymmetric addition of formaldehyde tert-butyl hydrazone to prochiral α-ketoesters and a Friedel-Crafts reaction. Several parameters that can affect the activity and selectivity of the reactions were analysed. The supported catalysts can be reused for more than 10 cycles with only a small loss in their properties. Finally, theoretical DFT calculations were carried out to interpret the results of the catalysed reactions.

13.
Chemistry ; 24(6): 1269-1273, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29235696

RESUMEN

Organocalcium compounds have been reported as efficient catalysts for various transformations, for cases in which one of the substrates contained an E-H (E=B, N, Si, P) bond. Here, we look at the possibility of employing an organocalcium compound for a transformation in which none of the precursors has a polar E-H bond. This study demonstrates the utilization of a well-defined amidinatocalcium iodide, [PhC(NiPr)2 CaI] (1) for cyanosilylation of a variety of aldehydes and ketones with Me3 SiCN under ambient conditions without the need of any co-catalyst. The reaction mechanism involves a weak adduct formation between 1 and Me3 SiCN leading to the activation of the Si-C bond, which subsequently undergoes σ-bond metathesis with a C=O moiety. Such a mechanistic pathway is unprecedented in alkaline earth metal chemistry. Experimental and computational studies support the mechanism.

14.
Chemistry ; 22(52): 18963-18974, 2016 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-27763696

RESUMEN

A mixed ligand approach was exploited to synthesize a new series of MnII -based coordination polymers (CPs), namely, CP1 {[Mn(µ-dpa)(µ-4,4'-bp)]⋅MeOH}∞ , CP2 {[Mn3 (µ-dpa)3 (2,2'-bp)2 ]}∞ , CP3 {[Mn3 (µ-dpa)3 (1,10-phen)2 ]⋅2 H2 O}∞ , CP4 {[Mn(µ-dpa)(µ-4,4'-bpe)1.5 ]⋅H2 O}∞ , CP5 {[Mn2 (µ-dpa)2 (µ-4,4'-bpe)2 ]⋅1/2 DEF}∞ , and CP6 {[Mn(µ-dpa)(µ-4,4'-bpe)1.5 ]⋅1/2 DMA}∞ (dpa=3,5-dicarboxyphenyl azide, 2,2'-bp=2,2'-bipyridine, 1,10-phen=1,10-phenanthroline, 4,4'-bpe=1,2-bis(4-pyridyl)ethylene, 4,4'-bp=4,4'-bipyridine, DEF=N,N-diethylformamide, DMA=N,N-dimethylacetamide), to develop multifunctional CPs. Various techniques, such as single-crystal X-ray diffraction (SXRD), FTIR spectroscopy, elemental analysis, and thermogravimetric analysis, were employed to fully characterize these CPs. The majority of the CPs displayed a four-connected sql topology, whereas CP4 and CP6 exhibited a two-dimensional SnS network architecture, which was further entangled in a polycatenation mode. Compound CP1 displayed an open framework structure. The CPs were scaled down to the nanoregime in a ball mill for cell imaging studies. Whereas CP2 and CP4 were employed for cell imaging with RAW264.7 cells, CP1 was exploited for both cell imaging and heterogeneous catalysis in a cyanosilylation reaction.


Asunto(s)
Complejos de Coordinación/química , Dimetilformamida/análogos & derivados , Manganeso/química , Fenantrolinas/química , Polímeros/química , Catálisis , Cristalografía por Rayos X , Dimetilformamida/química , Ligandos , Nanotecnología , Difracción de Rayos X
15.
Chemistry ; 20(42): 13551-6, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25182838

RESUMEN

The first example of a germanium(II) cyanide complex [GeCN(L)] (2) (L=aminotroponiminate (ATI)) has been synthesized through a novel and relatively benign route that involves the reaction of a digermylene oxide [(L)Ge-O-Ge(L)] (1) with trimethylsilylcyanide (TMSCN). Interestingly, compound 2 activates several aldehydes (RCHO) at room temperature and results in the corresponding cyanogermylated products [RC{OGe(L)}(CN)H] (R=H 3, iPr 4, tBu 5, CH(Ph)Me 6). Reaction of one of the cyanogermylated products (4) with TMSCN affords the cyanosilylated product [(iPr)C(OSiMe3 )(CN)H] (7) along with [GeCN(L)] quantitatively, and insinuates the possible utility of [GeCN(L)] as a catalyst for the cyanosilylation reactions of aldehydes with TMSCN. Accordingly, the quantitative formation of several cyanosilylated products [RC(OSiMe3 )(CN)H] (7-9) in the reaction between RCHO and TMSCN by using 1 mol % of [GeCN(L)] as a catalyst is also reported for the first time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA