Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
2.
Immunol Rev ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158380

RESUMEN

DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.

4.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928053

RESUMEN

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Filogenia , Piscirickettsia , Infecciones por Piscirickettsiaceae , Renibacterium , Salmo salar , Animales , Piscirickettsia/genética , Inmunidad Innata/genética , Salmo salar/microbiología , Salmo salar/genética , Salmo salar/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria , Renibacterium/genética , Renibacterium/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular
5.
Clin Genet ; 106(2): 187-192, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38606545

RESUMEN

Telomere biology disorder (TBD) can present within a wide spectrum of symptoms ranging from severe congenital malformations to isolated organ dysfunction in adulthood. Diagnosing TBD can be challenging given the substantial variation in symptoms and age of onset across generations. In this report, we present two families, one with a pathogenic variant in ZCCHC8 and another with a novel variant in TERC. In the literature, only one family has previously been reported with a ZCCHC8 variant and TBD symptoms. This family had multiple occurrences of pulmonary fibrosis and one case of bone marrow failure. In this paper, we present a second family with the same ZCCHC8 variant (p.Pro186Leu) and symptoms of TBD including pulmonary fibrosis, hematological disease, and elevated liver enzymes. The suspicion of TBD was confirmed with the measurement of short telomeres in the proband. In another family, we report a novel likely pathogenic variant in TERC. Our comprehensive description encompasses hematological manifestations, as well as pulmonary and hepatic fibrosis. Notably, there are no other reports which associate this variant to disease. The families expand our understanding of the clinical implications and genetic causes of TBD.


Asunto(s)
Linaje , ARN , Telomerasa , Telómero , Adulto , Femenino , Humanos , Masculino , Predisposición Genética a la Enfermedad , Mutación/genética , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/patología , ARN/genética , Telomerasa/genética , Telómero/genética
6.
Hematology ; 29(1): 2338509, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38597818

RESUMEN

Myelodysplastic syndromes (MDS) patients with DEAD-box helicase 41 (DDX41) mutations have been reported to be treated effectively with lenalidomide; however, there are no randomized studies to prove it. Venetoclax and azacitidine are safe and effective in high-risk MDS/AML. In this study, we evaluated the efficacy of venetoclax and azacitidine combination therapy in eight consecutive MDS patients with DDX41 mutations at our centre from March 2021 to November 2023. We retrospectively analyzed the genetic features and clinical characteristics of these patients. Our findings suggest that MDS patients with DDX41 mutation may benefit from the therapy, for six subjects received this regimen as initial therapy and five of the six subjects achieved complete remission.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Síndromes Mielodisplásicos , Sulfonamidas , Humanos , Estudios Retrospectivos , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Mutación , Azacitidina/uso terapéutico , ARN Helicasas DEAD-box
7.
Int J Hematol ; 119(5): 552-563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492200

RESUMEN

Clinical use of gene panel testing for hematopoietic neoplasms in areas, such as diagnosis, prognosis prediction, and exploration of treatment options, has increased in recent years. The keys to interpreting gene variants detected in gene panel testing are to distinguish between germline and somatic variants and accurately determine whether the detected variants are pathogenic. If a variant is suspected to be a pathogenic germline variant, it is essential to confirm its consistency with the disease phenotype and gather a thorough family history. Donor eligibility must also be considered, especially if the patient's variant is also detected in the expected donor for hematopoietic stem cell transplantation. However, determining the pathogenicity of gene variants is often complicated, given the current limited availability of databases covering germline variants of hematopoietic neoplasms. This means that hematologists will frequently need to interpret gene variants themselves. Here, we outline how to assess the pathogenicity of germline variants according to criteria from the American College of Medical Genetics and Genomics/Association for Molecular Pathology standards and guidelines for the interpretation of variants using DDX41, a gene recently shown to be closely associated with myeloid neoplasms with a germline predisposition, as an example.


Asunto(s)
ARN Helicasas DEAD-box , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Hematológicas , Humanos , ARN Helicasas DEAD-box/genética , Pruebas Genéticas/métodos , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Guías de Práctica Clínica como Asunto
8.
Biochem Soc Trans ; 52(1): 395-405, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38348889

RESUMEN

DDX41 is a DEAD-box helicase and is conserved across species. Mutations in DDX41 have been associated with myeloid neoplasms, including myelodysplastic syndrome and acute myeloid leukemia. Though its pathogenesis is not completely known, DDX41 has been shown to have many cellular roles, including in pre-mRNA splicing, innate immune sensing, ribosome biogenesis, translational regulation, and R-loop metabolism. In this review, we will summarize the latest understandings regarding the various roles of DDX41, as well as highlight challenges associated with drug development to target DDX41. Overall, understanding the molecular and cellular mechanisms of DDX41 could help develop novel therapeutic options for DDX41 mutation-related hematologic malignancies.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Síndromes Mielodisplásicos/genética , Mutación
9.
Heliyon ; 10(2): e24801, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312561

RESUMEN

Background: Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) with significant morbidity and mortality, and efficacy of currently available therapeutics are limited. Acute and chronic GVHD are similar in that both are initiated by antigen presenting cells and activation of alloreactive B-cells and T-cells, subsequently leading to inflammation, tissue damage, and organ failure. One difference is that acute GVHD is mostly attributed to T-cell activation and cytokine release, whereas B-cells are the key players in chronic GVHD. Ibrutinib is an irreversible inhibitor of the Bruton's tyrosine kinase (BTK), which is part of B-cell receptor signaling. Ibrutinib is currently used for treating chronic GVHD, but its efficacy towards acute GVHD is unknown. Besides BTK, ibrutinib also inhibits interleukin-2 inducible T-cell kinase (ITK), which is predominantly expressed in T-cells and a crucial enzyme for activating the downstream pathway of TCR signaling. ITK activates PLCγ2 and facilitates signaling through NF-κB, NFAT, and MAPK, leading to activation and proliferation of T-cells and enhanced cytokine production. Therefore, the TCR signaling pathway is indispensable for development of acute GVHD, and ITK inhibition by ibrutinib would be a rational therapeutic approach. Case presentation: A 56-year-old male acute myeloid leukemia patient with Myeloid neoplasms with germline DEAD-box RNA helicase 41 (DDX41) mutation underwent cord blood transplantation and developed severe gastrointestinal (GI) acute GVHD which was refractory to steroids and mesenchymal stem cell therapy. While acute GVHD accommodated by multiple life-threatening GI bleeding events persisted, chronic cutaneous GVHD developed, and ibrutinib 420 mg/day was initiated from day 147 of transplant. Although ibrutinib was commenced targeting the chronic GVHD, unexpected and abrupt remission of acute GVHD along with remission of chronic GVHD was observed. Conclusion: Ibrutinib is a promising therapeutic for treating acute GVHD, and further studies are warranted.

10.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203823

RESUMEN

Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Genes Reguladores , Neoplasias Hematológicas/genética , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Células Germinativas , Péptidos y Proteínas de Señalización Intracelular
11.
RNA ; 30(4): 404-417, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38282418

RESUMEN

RNA helicases drive necessary rearrangements and ensure fidelity during the pre-mRNA splicing cycle. DEAD-box helicase DDX41 has been linked to human disease and has recently been shown to interact with DEAH-box helicase PRP22 in the spliceosomal C* complex, yet its function in splicing remains unknown. Depletion of DDX41 homolog SACY-1 from somatic cells has been previously shown to lead to changes in alternative 3' splice site (3'ss) usage. Here, we show by transcriptomic analysis of published and novel data sets that SACY-1 perturbation causes a previously unreported pattern in alternative 3' splicing in introns with pairs of 3' splice sites ≤18 nt away from each other. We find that both SACY-1 depletion and the allele sacy-1(G533R) lead to a striking unidirectional increase in the usage of the proximal (upstream) 3'ss. We previously discovered a similar alternative splicing pattern between germline tissue and somatic tissue, in which there is a unidirectional increase in proximal 3'ss usage in the germline for ∼200 events; many of the somatic SACY-1 alternative 3' splicing events overlap with these developmentally regulated events. We generated targeted mutant alleles of the Caenorhabditis elegans homolog of PRP22, mog-5, in the region of MOG-5 that is predicted to interact with SACY-1 based on the human C* structure. These viable alleles, and a mimic of the myelodysplastic syndrome-associated allele DDX41(R525H), all promote the usage of proximal alternative adjacent 3' splice sites. We show that PRP22/MOG-5 and DDX41/SACY-1 have overlapping roles in proofreading the 3'ss.


Asunto(s)
Sitios de Empalme de ARN , Empalmosomas , Humanos , Sitios de Empalme de ARN/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Empalme del ARN , Empalme Alternativo , ARN Helicasas/genética , ARN Helicasas/metabolismo , ADN Helicasas/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
12.
Fish Shellfish Immunol ; 146: 109365, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199263

RESUMEN

DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.


Asunto(s)
FN-kappa B , Perciformes , Animales , FN-kappa B/genética , Filogenia , ARN Helicasas DEAD-box , Inmunidad Innata/genética , Perciformes/metabolismo , Macrófagos/metabolismo , Antivirales , Poli I , Proteínas de Peces , Mamíferos/metabolismo
14.
Br J Haematol ; 204(1): 171-176, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37710381

RESUMEN

Venetoclax (VEN) is an FDA-approved selective inhibitor of B-cell leukaemia/lymphoma-2 (BCL-2), used for treating elderly or unfit acute myeloid leukaemia (AML) patients unable to undergo intensive chemotherapy. Combining VEN with hypomethylating agents (HMAs) has shown impressive response rates in high-risk myelodysplastic syndromes (MDS) and relapsed/refractory AML. However, the efficacy of VEN and HMAs in treating DDX41-mutated (mDDX41) MDS/AML patients remains uncertain. Despite the favourable prognostic nature of mDDX41 MDS/AML patients, there is a lack of clinical experience regarding their response to different treatment regimens, leading to an unknown optimal therapeutic approach.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Anciano , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/inducido químicamente , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inducido químicamente , Compuestos Bicíclicos Heterocíclicos con Puentes , Sulfonamidas , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , ARN Helicasas DEAD-box
15.
Semin Diagn Pathol ; 40(6): 443-456, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37977953

RESUMEN

Hematological malignancies with underlying germline predisposition disorders have been recognized by the World Health Organization 5th edition and International Consensus Classification (ICC) classification systems. The list of genes and the associated phenotypes are expanding and involve both pediatric and adult populations. While the clinical presentation and underlying molecular pathogenesis are relatively well described, the knowledge regarding the bone marrow morphologic features, the landscape of somatic aberrations associated with progression to hematological malignancies is limited. These pose challenges in the diagnosis of low-grade myelodysplastic syndrome (MDS) to hematopathologists which carries direct implication for various aspects of clinical management of the patient, donor selection for transplantation, and family members. Here in, we provide a focused review on the diagnostic work-up of hematological malignancies with underlying germline predisposition disorders with emphasis on the spectrum of hematological malignancies associated with each entity, and characteristic bone marrow morphologic, somatic cytogenetic and molecular alterations at the time of diagnosis of hematological malignancies. We also review the key clinical, morphologic, and molecular features, that should initiate screening for these entities.


Asunto(s)
Neoplasias Hematológicas , Síndromes Mielodisplásicos , Adulto , Humanos , Niño , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética
16.
Clin Lab Med ; 43(4): 615-638, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37865507

RESUMEN

Molecular and sequencing advances have led to substantial breakthroughs in the discovery of new genes and inherited mutations associated with increased risk of developing myeloid malignancies. Many of the same germline mutated genes are also drivers of malignancy in sporadic cancer. Recognition of myeloid malignancy associated with germline mutations is essential for proper therapy, disease surveillance, informing related donor selection for hematopoietic stem cell transplantation, and genetic counseling of the patient and affected family members. Some germline mutations are associated with syndromic features that precede the development of malignancy; however, penetrance may be highly variable leading to masking of the syndromic phenotype and/or inherited etiology.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Genotipo , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética
17.
Front Oncol ; 13: 1205855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904876

RESUMEN

Inherited hematologic malignancies are linked to a heterogenous group of genes, knowledge of which is rapidly expanding using panel-based next-generation sequencing (NGS) or whole-exome/whole-genome sequencing. Importantly, the penetrance for these syndromes is incomplete, and disease development, progression or transformation has critical clinical implications. With the earlier detection of healthy carriers and sequential monitoring of these patients, clonal hematopoiesis and somatic driver variants become significant factors in determining disease transformation/progression and timing of (preemptive) hematopoietic stem cell transplant in these patients. In this review, we shed light on the detection of probable germline predisposition alleles based on diagnostic/prognostic 'somatic' NGS panels. A multi-tier approach including variant allele frequency, bi-allelic inactivation, persistence of a variant upon clinical remission and mutational burden can indicate variants with high pre-test probability. We also discuss the shared underlying biology and frequency of germline and somatic variants affecting the same gene, specifically focusing on variants in DDX41, ETV6, GATA2 and RUNX1. Germline variants in these genes are associated with a (specific) pattern or over-/underrepresentation of somatic molecular or cytogenetic alterations that may help identify the underlying germline syndrome and predict the course of disease in these individuals. This review is based on the current knowledge about somatic drivers in these four syndromes by integrating data from all published patients, thereby providing clinicians with valuable and concise information.

18.
DNA Repair (Amst) ; 131: 103581, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37832251

RESUMEN

Cells possess an inherent and evolutionarily conserved ability to detect and respond to the presence of foreign and pathological 'self' nucleic acids. The result is the stimulation of innate immune responses, signalling to the host immune system that defence mechanisms are necessary to protect the organism. To date, there is a vast body of literature describing innate immune responses to various nucleic acid species, including dsDNA, ssDNA and ssRNA etc., however, there is limited information available on responses to R-loops. R-loops are 3-stranded nucleic acid structures that form during transcription, upon DNA damage and in various other settings. Emerging evidence suggests that innate immune responses may also exist for the detection of R-loop related nucleic acid structures, implicating R-loops as drivers of inflammatory states. In this review, we aim to summarise the evidence indicating that R-loops are immunogenic species that can trigger innate immune responses in physiological and pathological settings and discuss the implications of this in the study of various diseases and therapeutic development.


Asunto(s)
Neoplasias , Ácidos Nucleicos , Humanos , Estructuras R-Loop , Inmunidad Innata , ADN/genética , Neoplasias/patología , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
19.
Cell Rep ; 42(8): 112805, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37467105

RESUMEN

Cellular stress in the form of disrupted transcription, loss of organelle integrity, or damage to nucleic acids can elicit inflammatory responses by activating signaling cascades canonically tasked with controlling pathogen infections. These stressors must be kept in check to prevent unscheduled activation of interferon, which contributes to autoinflammation. This study examines the role of the transcription factor myocyte enhancing factor 2A (MEF2A) in setting the threshold of transcriptional stress responses to prevent R-loop accumulation. Increases in R-loops lead to the induction of interferon and inflammatory responses in a DEAD-box helicase 41 (DDX41)-, cyclic GMP-AMP synthase (cGAS)-, and stimulator of interferon genes (STING)-dependent manner. The loss of MEF2A results in the activation of ATM and RAD3-related (ATR) kinase, which is also necessary for the activation of STING. This study identifies the role of MEF2A in sustaining transcriptional homeostasis and highlights the role of ATR in positively regulating R-loop-associated inflammatory responses.


Asunto(s)
Nucleotidiltransferasas , Transducción de Señal , Nucleotidiltransferasas/metabolismo , ARN Helicasas , Interferones , Inmunidad Innata
20.
Front Oncol ; 13: 1153082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434984

RESUMEN

Introduction: Inherited DDX41 mutations cause familial predisposition to hematologic malignancies including acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), with the majority of DDX41 mutated MDS/AMLs described to date harboring germline DDX41 and co-occurring somatic DDX41 variants. DDX41-AMLs were shown to share distinguishing clinical features such as a late AML onset and an indolent disease associated with a favorable outcome. However, genotype-phenotype correlation in DDX41-MDS/AMLs remain poorly understood. Methods: Here, we studied the genetic profile, bone marrow morphology and immunophenotype of 51 patients with DDX41 mutations. We further assessed the functional impact of ten previously uncharacterized DDX41 variants of uncertain significance. Results: Our results demonstrate that MDS/AML cases harboring two DDX41 variants share specific clinicopathologic hallmarks that are not seen in other patients with monoallelic DDX41 related hematologic malignancies. We further showed that the features seen in these individuals with two DDX41 variants were concordant with biallelic DDX41 disruption. Discussion: Here, we expand on previous clinicopathologic findings on DDX41 mutated hematologic malignancies. Functional analyses conducted in this study unraveled previously uncharacterized DDX41 alleles and further illustrate the implication of biallelic disruption in the pathophysiology of this distinct AML entity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA